
Local Search Methods for Finding a Nash Equilibrium in Two-Player Games

Sofia Ceppi, Nicola Gatti, Giorgio Patrini, Marco Rocco
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza Leonardo da Vinci, 32, 20133, Milano, Italy

{ceppi, ngatti}@elet.polimi.it, {giorgio.patrini, marco1.rocco}@mail.polimi.it

Abstract—The computation of a Nash equilibrium of a
game is a challenging problem in artificial intelligence. This
is because the computational time of the algorithms provided
by the literature is, in the worst case, exponential in the
size of the game. In this paper, we present, to the best
of our knowledge, the first anytime algorithm based on the
combination of support enumeration methods and local search
techniques to find a Nash equilibrium in two-player general-
sum games. The algorithm searches for a Nash equilibrium and,
if it is stopped before it has found an equilibrium, it returns
the best approximate equilibrium found so far. We design
some dimensions for our algorithm and we experimentally
evaluate them. Our algorithm solves with high probability
games that are unsolvable with the algorithms known in the
literature within a reasonable time and provides good anytime
performance.

Keywords-Algorithmic game theory, Nash equilibrium, local
search techniques

I. INTRODUCTION

Non-cooperative game theory provides models and solu-
tion concepts to capture settings in which rational agents
strategically interact. The central solution concept is Nash
equilibrium [1]. It prescribes strategies such that no agent
can gain more by deviating unilaterally from them. Any
game is proved to admit at least a Nash equilibrium, however
its computation is a challenging problem even with two
agents. In [2] the authors show that computing a Nash
equilibrium in an n-player game is PPAD-complete. It is
generally believed that P≠PPAD and then, in the worst case,
computing a Nash equilibrium will take time exponential in
the size of the game [3].
In this paper we focus on two-player general-sum

strategic-form games with complete information. The liter-
ature provides three solving algorithms: LH [4] based on
linear complementarity mathematical programming, PNS [5]
based on support enumeration, and SGC [6] based on
mixed integer linear programming. Each of the above three
algorithms outperforms the others in some specific settings:
PNS outperforms SGC and LH for almost all the games
generated by GAMUT [7]; LH outperforms PNS and SGC
for games with medium-large support equilibria; SGC out-
performs PNS and LH when one searches for an optimal
equilibrium. As shown in [6], [8], the instances of the most
game classes (with 150 actions per agent) are solved in a

negligible time (< 1 s). However, there are some classes
(e.g., Covariant, Graphical, and Polymatrix) whose instances
are hard to be solved with all the algorithms. This is due to
three reasons: they search for an equilibrium by enumerating
all the possible solutions in a static way, the number of
these rises exponentially in the number of agents’ actions,
and, in the worst case, the algorithms must explore the
whole solution space. In PNS the number of supports rises
as 4n and in LH the number of the vertices of the best
response polytope rises as 2.6n [9]. The literature deals with
computational hardness providing algorithms to compute
approximate equilibria [10]. However, it has been shown
that also the problem of approximating a Nash equilibrium
is PPAD-complete.
In the present paper, we propose, to the best of our

knowledge, the first anytime algorithm based on the com-
bination of support enumeration methods and local search
techniques [11]. We formulate the problem of finding a Nash
equilibrium as a combinatorial optimization problem where
the search space is the support space and the function to
be minimized is designed such that its global minima corre-
spond to Nash equilibria. Basically, our algorithm works by
iterative generating new solutions (according to a topological
representation of the support space) and accepting those
that improve the value of a given objective function. Since
the objective function is generally non-convex and presents
multiple local optima, metaheuristics are employed to escape
from them and to reach a global optimum. We design
several dimensions for our algorithm: objective functions
(two inspired by operational research concepts returning
an infeasibility measure of the associated mathematical
programming problem and two inspired by game theory
concepts: approximate equilibrium and regret), heuristics
(iterative improvement and Metropolis with ad hoc pivot-
ing rules), and metaheuristics (random restart, simulated
annealing, tabu search, and variable neighborhood). In our
experimental analysis, we isolate hard instances produced
with GAMUT that are unsolvable with the above three
algorithms within a reasonable time (i.e., two hours) and
then we apply our algorithm to such instances evaluating the
time needed for finding an equilibrium. We show that our
algorithm outperforms LH, PNS, and SGC solving with high
probability small-medium games within a short time and

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.57

335

with small probability large games within a reasonable time.
Furthermore, we implement anytime versions of LH, PNS
and SGC and we compare them with respect to our algorithm
in terms of quality of the best solution found within a given
deadline. We show that the anytime performances of our
algorithm are better than those of the best anytime version
among LH, PNS, and SGC.

II. STATE OF THE ART

A. Games, Solution Concepts, and PNS Algorithm

A strategic-form game is a tuple (N,A,u), where: N =
{1, . . . ,m} is the set of agents; A = (A1, . . . ,Am) where Ai

is the set of actions available to agent i; u = (u1, . . . , um)
where ui is the utility function of agent i. In this work we
focus on two-player games.
Example 2.1: We consider a two-player strategic-form

game where agent 1’s available actions are A1 =
{a1, a2, a3, a4, a5} and agent 2’s available actions are A2 =
{b1, b2, b3, b4, b5}. The pairs (x, y)s reported in the bimatrix
depicted in Fig. 1 are the payoffs of agent 1 and agent 2,
respectively.

b1 b2 b3 b4 b5
a1 64,63 91,0 25,63 94,37 36,51
a2 47,25 46,62 42,50 38,80 23,89
a3 54,30 78,41 49,2 65,6 71,22
a4 79,10 31,56 77,31 64,47 64,51
a5 57,50 26,62 12,100 44,58 75,34

Figure 1. Payoff bimatrix of Example 1.

We denote by σi the strategy of agent i. A strategy profile
σ = (σ1, σ2) is a Nash equilibrium if, for all the agents i and
for all the strategies σ′i, we have ui(σi, σ−i) ≥ ui(σ′i, σ−i),
where −i denotes the opponent of i. Given a strategy σi,
the support Si of agent i is the set of actions played with
non-null probability by i and a joint support, denoted by S,
is a tuple specifying one support for each agent, namely, S =
(S1, S2). In what follows, at first we review the technicalities
behind PNS that we use in our work and then the concepts
of approximate equilibrium.
PNS is a blind search algorithm: it statically scans sup-

ports in increasing order of balance and size. (The balance
is defined as ∣∣S1∣ − ∣S2∣∣, while the size of S is defined as
∣S1∣+∣S2∣.) In order to reduce the search space, conditionally
dominated actions are removed, i.e., actions a ∈ Ai for
which there is an a′ ∈ Ai such that Ui(a, b) ≤ Ui(a′, b) for
all b ∈ S−i. For each S in which there is no conditionally
dominated action, PNS checks whether or not an equilibrium
there exists. In two-player complete-information games this
problem can be formulated as a linear feasibility problem,
where the variables are the probabilities pi(a) with which
agent i takes action a, as follows (vi,j denotes the utility
expected by agent i from playing action j):

∑
a∈A−i

p−i(a) ⋅ ui(aj , a) = vi,j

∀i ∈ {1,2},
aj ∈ Ai

(1)

vi,j = vi

∀i ∈ {1,2},
aj ∈ Si

(2)

vi,j ≤ vi

∀i ∈ {1,2},
aj ∈ Ai/Si

(3)

pi(aj) ≥ 0
∀i ∈ {1,2},

aj ∈ Si

(4)

pi(aj) = 0
∀i ∈ {1,2},
aj ∈ Ai/Si

(5)

∑
a∈Ai

pi(a) = 1 ∀i ∈ {1,2} (6)

The hardness of computing a Nash equilibrium pushes for
the need for approximate solutions. Fix ε > 0, a strategy
profile σ = (σ1, σ2) is an ε-Nash equilibrium if, for all
the agents i and for all the actions a ∈ Ai, we have
ui(σi, σ−i) ≥ ui(a, σ−i) − ε. The meaning is that, if agent
i deviates from σi making any available action a with
probability of one, then she cannot gain more than ε. In
our work we use a stronger concept of ε-Nash equilibrium,
called well-supported ε-Nash and defined in [10]. Fix ε > 0,
a strategy profile σ = (σ1, σ2) is a well-supported ε-Nash
equilibrium if, for all the agents i and for all the actions
a′ ∈ Si and a ∈ Ai, we have ui(a′, σ−i) ≥ ui(a, σ−i) − ε. A
strategy profile that is a well-supported ε-Nash equilibrium
is also an ε′-Nash equilibrium with ε′ ≤ ε, for some ε′ > 0.
Consider Example 2.1, strategy profile σ = (σ1, σ2) where

σ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 0.1968

a2 0.1220

a3 0.6812

a4 0.0

a5 0.0

, σ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 0.3133

a2 0.3608

a3 0.3259

a4 0.0

a5 0.0

,

is a well-supported ε-Nash equilibrium with ε = 16.02 and
an ε′-Nash equilibrium with ε′ = 5.36.
The computation of approximate equilibria in general-

sum games is currently an open problem and the literature
providing a series of examples more than a coherent set of
results, e.g., see [12].

B. Local Search Techniques
Local search techniques [11] are tools commonly em-

ployed to address combinatorial optimization problems [13].
Essentially, they are heuristic algorithms and produce so-
lutions that are not necessarily optimal, but that can be
found within an acceptable amount of time. However, it is
worth noting that with several problems (e.g., SAT) local
search techniques allow one to handle instances, finding the
exact solution, that the fastest non-heuristic search algorithm

336

is not able to handle. The basic idea behind local search
techniques is the provision of a topology over the space of
the solutions in terms of neighborhood and the exploitation
of this topology to search iteratively for better solutions.
Formally, an instance of a combinatorial optimization

problem is a pair (Θ, f), where the solution space Θ is a
finite or countably infinite set of solutions and the function
f is a mapping f ∶ Θ → R that assigns a real value to each
solution in Θ [11]. A combinatorial optimization problem is
the determination of a solution s∗ ∈ Θ such that f(s∗) is
globally optimal. From here on we consider the problem of
minimizing f .
The key feature of local search algorithms is the neigh-

borhood function. For an instance (Θ, f) of a combinatorial
optimization problem, a neighborhood function is a mapping
N ∶ Θ → ℘(Θ) where ℘ is the power set. The neighborhood
function specifies for each solution s ∈ Θ a set N(s) ⊆ Θ

which is called the neighborhood of s. A solution s′ is a
neighbor of s if s′ ∈ N(s). Usually, a function d ∶ Θ×Θ → N

that returns the distance between two solutions is introduced
and the neighborhood function N is derived from d: a
solution s′ ∈ N(s) if d(s, s′) ≤ δ where δ is a parameter.
Local search algorithms start with an initial solution and

then they iteratively generate a new solution that is near
(according to N(S)) to the current one. The generation
of a new solution is driven by a heuristic. We review the
most common heuristics [13]. The first one is iterative
improvement: given a solution s, the algorithm explores
its neighborhood N(s) and accepts a solution according
to a given pivoting rule. In particular, it accepts, in the
case of first improvement pivoting rule, the first generated
solution s′ with f(s′) < f(s) and, in the case of best
improvement pivoting rule, the solution s′ ∈ N(s) with
f(s′) < f(s) and f(s′) ≤ f(s′′), ∀s′′ ∈ N(s). Solutions
can be generated according to a given order or random. The
second one is Metropolis: given a solution s, its neighbors
are explored randomly and a solution s′ ∈ N(s) is always
accepted if f(s′) < f(s) and is accepted with probability
exp(f(s)−f(s′)

t
), where t is a parameter called temperature,

if f(s) ≤ f(s′).
A solution s such that f(s) ≤ f(s′) for all the neighbors

s′ ∈ N(s) is a local optimum. In order to escape from
local optima and reach global optima, metaheuristics are
commonly employed. Examples of metaheuristics are [11]:
random restart, simulated annealing, tabu search, and vari-
able neighborhood.
Local search techniques are successfully applied to several

combinatorial optimization problems [11], e.g., Traveling
Salesman Problem and Job Shop Scheduling. Furthermore,
local search techniques were shown to be very effective for
propositional satisfiability problems, commonly referred as
SAT [14]. For instance, GSAT (a randomized local search
algorithm) can solve 2,000 variable computationally hard

randomly-generated 3CNF formulas, whereas the fastest
systematic search algorithms cannot handle instances from
the same distribution with more than 400 variables [15]. We
briefly review how a SAT problem can be formulated as
a combinatorial optimization problem, being very close to
the formulation we propose in this work for the problem of
finding a Nash equilibrium. A solution s is a binary vector,
e.g., s = [0,1, . . . ,0], where the i-th position of s is the truth
assignment of the i-th variable. Function f is defined as the
number of satisfied clauses. Usually, iterative improvement
with randomized pivoting is employed to solve SAT.
We recall that local search techniques have been applied to

the problem of searching for a Nash equilibrium only in very
special cases. Exactly, they have been applied to potential
games where the minimization of a function (called potential
function) with discrete arguments corresponds to a pure
strategy Nash equilibrium [16], [17] (these games always
admit pure strategy equilibria) and they have been applied
to find approximated equilibria in pure-strategies infinite-
games [18]. To the best of our knowledge, no local search
technique has yet been adopted to compute Nash equilibria
with mixed strategies.

III. NASH COMPUTATION AS A COMBINATORIAL
OPTIMIZATION PROBLEM

We cast the problem of searching for a Nash equilibrium
as the minimization of a combinatorial optimization problem
instance (Θ, f) where Θ is the space of the joint supports
and f is a function that assigns each joint support S a
value in [0,1]. This optimization problem is combinatorial,
the size of the domain of f being combinatorial in the
number of the agents’ actions. For simplicity, we represent
support Si as a binary vector such that action ai is in
the support if the i-th position of Si is equal to 1, it is
not otherwise. We define f such that its global optima
correspond to Nash equilibria, formally, f(S) = 0 when
joint support S leads to a Nash equilibrium. When S does
not lead to any Nash equilibrium, f(S) can be arbitrary,
as long as f(S) > 0. Obviously, the aim is to design a
f(S) that returns the actual distance, in the neighborhood-
space, between S and the nearest global optimum. In the
following, we provide four different definitions of f : the first
two inspired by operational research (returning a measure
of infeasibility of the associated mathematical programming
problem), while the second two inspired by game theory
concepts (approximate equilibrium and agents’ regret).

A. Irreducible Infeasible Subset
We consider the linear programming problem constituted

by constraints (1)-(6). Fix a joint support S, we assign
f(S) = 0 if the above linear programming problem is
feasible. In the case in which it is not feasible we assign
a value that provides a measure of infeasibility of the
problem. The operational research literature provides two

337

approaches [19]: finding an irreducible infeasible subset
(IIS) of constraints and finding a maximum feasible subset
(MFS). An irreducible infeasible set is an infeasible subset
of constraints and variable bounds that becomes feasible
if any single constraint or variable bound is removed. The
computation of an IIS is usually fast. Finding the maximum
feasible subset is the same thing as finding the smallest
number of constraints to remove such that the remainder
constitute a feasible set. Differently from the case of IIS,
finding a MFS is an NP-complete problem and is usually
solved by using heuristics [19]. We define f as a function of
the size of the IIS, namely, f(S) = #con+#var+1−size(IIS(S))

#con+#var+1

where #con is the number of constraints in the problem and
#var is the number of variables. The idea is simple, the
larger the IIS the lower the measure of infeasibility of the
problem.
Consider Example 2.1 and assume S = (S1, S2) where

S1 = (a1, a2, a3) and S2 = (b1, b2, b3). In this case CPLEX
returns a IIS composed of: constraints (1) with i = 2

and any j ∈ {a1, a2, a3, a4}, constraints (2) with i = 2

and any j ∈ {a1, a2, a3}, constraint (3) with i = 2 and
j = a4, constraint (5) with i = 1 and j ∈ {a4, a5}, and
constraint (6) with i = 1. We have #con = 32, #var = 22,
size(IIS(S)) = 11 and, thus, f(S) = 0.8.

B. Inequality Constraint Violations
In the previous definition of f(S), we gave the same im-

portance to equality and inequality constraints. Here, instead,
we force the equality constraints (1), (2), (5), and (6) to be
satisfied and we measure the violations only of the inequality
constraints (3) and (4). The basic idea is that with balanced
games (the most common ones) the equality constraints
constitute a non-singular system of linear equations: the
number of variables (i.e., probabilities pi(j)) and the number
of linearly independent constraints are the same. Once the
values of the probabilities pi(j) have been computed by
solving the system of linear equations, for each inequality
constraint we check whether or not it is violated. We need
to introduce a new constraint over probabilities pi(j) since
solving the equality constraints can produce probabilities
larger than one:

pi(aj) ≤ 1 ∀i ∈ {1,2}, aj ∈ Si (7)

In counting the number of constraints, for each variable
pi(j) we consider constraints (4) and (7) as a unique
bound constraint. In this way, exactly one constraint is
assigned to each variable pi(j): if aj ∈ Si, a bound
constraint is assigned, while, if aj /∈ Si, a constraint (3)
is assigned. The definition of f(S) is straightforward. We
define f(S) = #vio icon

#icon
where #vio icon is the number

of violated inequality constraints and #icon is the overall
number of inequality constraints.
Consider Example 2.1 and assume S = (S1, S2) where

S1 = (a1, a2, a3) and S2 = (b1, b2, b3). The solution of the

linear system is: p1(a1) = 0.28, p1(a2) = 0.38, p1(a3) =
0.34, p2(b1) = 1.01, p2(b2) = −0.28, p2(b3) = 0.27. The
violations are: constraints (3) with i = 1 and any j ∈ {a4, a5}
and with i = 2 and any j ∈ {b4, b5}, constraint (4) with i = 2

and j = b2, and constraint (7) with i = 2 and j = b1. We have
#icon = 10, #vio icon = 6 and, thus, f(S) = 0.6.

C. Best Well-Supported ε-Nash
Here the idea is to compute the best approximate equilib-

rium. We focus on the solution concept of well-supported
ε-Nash equilibria. Given a joint support S, we can formulate
the problem of computing the well-supported ε-Nash equi-
librium that minimizes ε as a linear optimization problem:

min ε (8)
ε ≥ 0 (9)

vi,j + ε ≥ vi,k

∀i ∈ {1,2},
aj ∈ Si, ak ∈ Ai

(10)

constraints (1), (4)-(6)

Constraints (10) code the definition of well-supported ε-
Nash equilibrium. Call ε∗ the result of the above minimiza-
tion and U∗ = max

i=1,2
{ max

j∈Ai,k∈A−i

Ui(j, k) − min
j∈Ai,k∈A−i

Ui(j, k)}
the largest difference between the maximum and the mini-
mum payoff that an agent can receive. We define f(S) = ε∗

U∗
.

We use U∗ to normalize f in [0,1]. Notice that searching
for S such that ε∗ = 0 is equivalent to search for a Nash
equilibrium.

D. Minimum Regret
We define f(S) as the agents’ minimum regret [6].

Technically speaking, we use a variation of the regret, where
we omit the probabilities pi(aj) (otherwise the optimization
problem would be quadratic). Given S, the computation of
the agents’ minimum regret can be formulated as a linear
optimization problem very similar to the one used above for
the best well-supported ε-Nash equilibrium (ri,j denotes the
regret of agent i from action j):

min ∑
i∈{1,2}

∑
aj∈Si

ri,j (11)

ri,j ≥ 0
∀i ∈ {1,2},

aj ∈ Si

(12)

vi,j + ri,j ≥ vi,k

∀i ∈ {1,2},
aj ∈ Si, ak ∈ Ai

(13)

constraints (1), (4)-(6)

Constraints (13) code the definition of regret. Notice that
the main difference between the formulation for computing
ε∗ and that for computing r∗ (the result of the above
minimization) is that in the first the maximum regret is

338

minimized, instead in the second the cumulative regret is.
Notice that a strategy profile with r∗ is also a well-supported
ε-Nash equilibrium with ε ≤ r∗. Searching for S such that
r∗ = 0 is equivalent to search for a Nash equilibrium. We
define f(S) = r∗

U∗(∣A1∣+∣A2∣)
. We use the term U∗(∣A1∣+∣A2∣)

to normalize f in [0,1] (U∗ is computed as discussed in the
previous section).
Consider Example 2.1 and assume S = (S1, S2) where

S1 = (a1, a2, a3) and S2 = (b1, b2, b3). The solution of the
above optimization problem is: p1(a1) = 0.19, p1(a2) =
0.12, p1(a3) = 0.69, p2(b1) = 0.31, p2(b2) = 0.36, p2(b3) =
0.33. The regrets are: r1,1 = 0, r1,2 = 16.02, r1,3 = 0 and
r2,1 = 0, r2,2 = 0, r2,3 = 16.18. Agents’ regret is r∗ = 32.20.

IV. FORMULATING THE LOCAL SEARCH PROBLEM

A. Neighborhood Function

We define the neighborhood function N(S) on the ba-
sis of the distance between two solutions. In particular,
we define d(S,S′) as the Hamming distance between S

and S′, i.e., d(S,S′) = ∑i=1,2∑n
j=1 ∣Si(j) − S′

i(j)∣ where
Si(j) ∈ {0,1} (we recall that we represent supports as
binary vectors) is the j-th element of Si. Then, we define
the neighborhood function Nk(S) on the basis of parameter
k as follows: given a joint support S, its k-neighborhood
Nk(S) is composed of all the joint supports S′ such that
d(S,S′) ≤ 2k. We motivate why we use d(S,S′) ≤ 2k

instead of d(S,S′) ≤ k. The main reason is based on the
results discussed in [20]: games usually admit equilibria with
balanced joint supports, i.e., S = (S1, S2) where ∣S1∣ = ∣S2∣.
We notice that the shortest distance between two balanced
joint supports S and S′ is d(S,S′) = 2. Indeed, we have
d(S,S′) = 1 only if one action is added to or removed from
the support of exclusively one agent. Using d(S,S′) = 1

would force one to generate only non-balanced supports as
neighbors of a balanced support. This would lead to the
search algorithm spending too much time on exploring non-
balanced supports.
Call n the number of actions available to each agent (we

suppose that all the agents have the same number of available
actions). Local search with arbitrary k iteratively explores
neighborhoods Nk(S) of size ∑k

i=1 (n

i
)2. When n is large,

the neighborhood Nk(S) could be excessively large even
with a small k and the search could result inefficient. In
order to reduce the size of the neighborhood we resort to
the concept of conditional dominance used in PNS. If at
least a conditionally dominated action is in S, then S cannot
lead to any equilibrium. We use this concept to discard
solutions in Nk(S). Practically, at first we check whether
or not a joint support S has conditionally dominated actions
(this task requires a computational time that is negligible
with respect to the evaluation of f(S)) and then, if a joint
support S does not present any conditionally dominated
action, we evaluate f(S). We experimentally evaluate the

impact of discarding conditionally dominated solutions in
some instances (5 per class) of Covariant, Graphical, and
Polymatrix games generated by GAMUT. The percentage
of discarded solutions is at least 50% in all the cases and
thus the size of Nk(S) halves.

B. Designing the Local Search Strategies

We summarize the strategies we employed, discussing
how the initial solution is chosen and what heuristics and
metaheuristics we used.
Initial solution. We implemented a random generation

(RG) with threshold UPPER-BOUND: all the solutions S ran-
domly generated with f(S) > UPPER-BOUND are discarded.
When UPPER-BOUND= 1, the threshold is disabled.
Heuristics. We implemented iterative improvement (II)

and Metropolis (MET). II uses the following pivoting rules.
Best improvement (II-BI): all the neighbors are generated

in lexicographic order and the best one, if better than the
current solution, is chosen as next solution.
First improvement with lexicographic generation (II-FIL):

the neighbors are generated in lexicographic order and the
first generated solution, that is better than the current one,
is chosen as next solution.
First improvement with random generation (II-FIR): the

neighbors are generated randomly and the first generated
solution, that is better than the current one, is chosen as
next solution. We define a parameter, named MAX-TRIALS,
that sets the maximum number of solutions to be generated
in a given neighborhood. When no solution among the
MAX-TRIALS generated ones is better than the current,
metaheuristics are activated.
We implemented a variation of II-FIR, named II-FIRV.

With this pivoting rule, at first a small solution space that
contains, with high probability, high quality solutions is
explored and then the exploration continues randomly as in
II-FIR. For reason of space, we describe the implementation
of II-FIRV only when f is defined as the minimization of
ε∗ or the minimization of r∗ (we shall show below that
they provide the best performance). By computing f(S),
the solver returns also the values vi,j for each action. The
basic idea is to exploit this information in the generation
of the neighbors: we generate solutions where the worst
actions in the support (those with the smallest value of vi,j)
are removed and the best actions outside the support (those
with the largest value of vi,j) are introduced. For instance,
with Nk(S) where k = 1, at first the algorithm generates
solutions where the worst action in the support of each agent
is removed without adding new actions, or the best action
outside the support of each agent is added without removing
any actions, or the worst action in the support of an agent
is removed and the best one outside the support is added.
The same can be accomplished when k > 1, removing and
adding multiple actions.

339

Finally, we implemented Metropolis (MET) with param-
eter TEMP. In MET, the solution generation is random.
Parameter MAX-TRIALS works as for II-FIR.
Metaheuristics. We implemented random restart (RR)

by setting a parameter MAX-ITERATIONS as the longest
sequence of solutions to be considered. After having vis-
ited MAX-ITERATIONS solutions, a new randomly generated
solution is produced. We implemented simulated annealing
(SA) by setting TEMP as a function of the iteration. We
implemented tabu search (TS) by introducing a circular list
containing the last MEMORY visited solutions, where MEM-
ORY is a parameter. Whenever a solution is generated, we
check whether or not it is in the list. In the former case we
discard it, otherwise we evaluate f . Finally, we implemented
variable neighborhood (VNS): whenever a local optimum is
reached, a random restart is accomplished in Nk(S) where
k is increased by one at each step. Metaheuristics work until
an equilibrium has been found or the deadline is expired.

V. EXPERIMENTAL EVALUATION

A. Experimental Setting

We implemented our algorithm with C calling
CPLEX [21] via AMPL [22]. We limit the evaluation
to hard game instances, because the other classes can be
efficiently solved by using PNS algorithm. (In principle,
PNS and our algorithm could be executed in parallel.1) We
generated GAMUT game instances of all the classes with
actions from 50 to 100 (with a step of 10 actions) and
payoffs normalized in [0,1]. We implemented LH (with C),
PNS (with C calling CPLEX via AMPL), and SGC (with
AMPL and CPLEX) and we isolated five instances per
combination of game class/action number unsolvable within
two hours. We used a UNIX computer with dual quad-core
2.33GHz CPU and 8GB RAM. For reasons of space, we
focus on the hardest game classes: CovariantGame-Rand,
GraphicalGame-RG, and PolymatrixGame-RG. We report
the percentages of the hard game instances for these classes
in Tab. I (over 50 instances per class).

Game class actions
50 60 70 80 90 100

CovariantGame-Rand 22% 30% 38% 44% 50% 54%

GraphicalGame-RG 40% 44% 78% 92% 96% 98%

PolymatrixGame-RG 12% 32% 86% 96% 98% 98%

Table I
PERCENTAGES OF HARD INSTANCES.

1A support enumeration based algorithm for tackling both easy and hard games
can be easily designed by combining PNS together with our algorithm: initially a
small fraction of time (≤ 60 s) is devoted to PNS to check small supports and, if no
equilibrium is found, local search techniques are used. Indeed, PNS either immediately
finds an equilibrium or it does not terminate within a reasonable time.

B. FIR Parameters’ Tuning
We tune parameters MAX-TRIALS and MAX-ITERATIONS

in II-FIR with RR. We consider five possible values for each
parameter as a function of the number of agents’ actions:
n, 2n, n2

2
, n2, and 2n2. For each combination of MAX-

TRIALS and MAX-ITERATIONS, we apply the algorithm to
the CovariantGame-Rand instances with 50 actions with a
deadline of 10 minutes for 5 times, evaluating the average
success percentage and computational time. We report the
results in Tab. II for ε∗ and r∗ (they have the best perfor-
mances). The best configuration is with MAX-TRIALS= n2

and MAX-ITERATIONS= n2. A small value of MAX-TRIALS
does not allow the algorithm to explore a sufficient number
of solutions near to the current solution and then to find
a solution better than the current one, if there exist. This
happens when the current f(S) is small and a strict number
of neighbors is better than it. On the other side, when
MAX-TRIALS= 2n2, the algorithm spends too much time
in generating solutions. A small value of MAX-ITERATIONS
does not allow the algorithm to follow paths of solutions
that are sufficiently long. This leads the algorithm to have a
random restart before reaching a local optimum. Preliminary
results with games with 50-100 actions confirm that the
previous configuration is the most effective.

MAX-TRIALS
f(S)

n − 2n n2/2 n2 2n2

M
A
X
-I
T
E
R
A
T
IO
N
S

n
(0%) − (0%) − (4%) 416 (0%) − ε∗

(0%) − (4%) 379 (8%) 353 (4%) 367 r∗

2n
(0%) − (16%) 455 (24%) 483 (16%) 493 ε∗

(0%) − (20%) 394 (32%) 424 (24%) 437 r∗

n2/2
(0%) − (40%) 476 (32%) 460 (28%) 488 ε∗

(0%) − (44%) 361 (68%) 329 (52%) 422 r∗

n2 (0%) − (44%) 453 (52%) 408 (40%) 462 ε∗

(0%) − (60%) 326 (92%) 272 (76%) 401 r∗

2n2 (0%) − (32%) 501 (40%) 482 (28%) 522 ε∗

(0%) − (56%) 351 (72%) 297 (52%) 456 r∗

Table II
PERCENTAGE WITH WHICH AN EQUILIBRIUM IS FOUND (WITHIN

10 MINUTES) AND TIME IN SECONDS NEEDED TO FIND IT WITH II-FIR
AND RR (THE VALUES ARE AVERAGED OVER 25 EXECUTIONS).

C. Success Percentages and Computational Times
We execute our algorithm for five times per instance

with k = 1 and a deadline of two hours. No instance
has been solved with f(S) =IIS, while #vio icon provides
poor performances with a success percentage of 16% for
games with 50 actions (no instance with more than 60
actions has been solved). The best f(S) is r∗, providing
about the double success percentage of ε∗ and a shorter
computational time. The best heuristic is II-FIRV, providing
results slightly better than II-FIR (with II-BI and II-FI no
instance has been solved). The best metaheuristic is RR
(VNS provides results similar to RR, while tabu list has
no effect and SA provides worse results). We report in

340

actions
game classes

f(S)CovariantGame-Rand GraphicalGame-RG PolymatrixGame-RG
success time CD best U-B success time CD best U-B success time CD best U-B

50 62% 502 s no 1.0 62% 618 s no 1.0 62% 538 s no 1.0 ε∗

96% 327 s no 1.0 96% 403 s no 1.0 96% 352 s no 1.0 r∗

60 58% 688 s no 1.0 58% 836 s no 0.8 58% 748 s no 0.7 ε∗

92% 443 s no 1.0 92% 595 s no 0.8 92% 473 s no 0.7 r∗

70 48% 932 s yes 1.0 42% 1009 s yes 0.6 52% 891 s yes 0.7 ε∗

76% 638 s yes 0.6 80% 787 s yes 0.6 84% 596 s yes 0.7 r∗

80 32% 1365 s yes 0.5 28% 1524 s yes 0.6 40% 1467 s yes 0.6 ε∗

48% 1018 s yes 0.5 48% 1190 s yes 0.4 52% 997 s yes 0.5 r∗

90 16% 2101 s yes 0.5 12% 2754 s yes 0.4 16% 2644 s yes 0.5 ε∗

24% 1681 s yes 0.4 28% 2042 s yes 0.4 28% 1702 s yes 0.5 r∗

100 8% 4013 s yes 0.4 8% 4606 s yes 0.4 8% 4573 s yes 0.5 ε∗

12% 3127 s yes 0.4 16% 3511 s yes 0.4 16% 3467 s yes 0.5 r∗

Table III
SUCCESS PERCENTAGES, COMPUTATIONAL TIMES IN SECONDS, CONDITIONALLY DOMINANCE (CD) (WHETHER OR NOT IT IS USED), AND THE VALUE

OF THE BEST UPPER-BOUND (BEST U-B).

Tab. III the average success percentages, the computational
times, the conditionally dominance (CD) (whether or not
it is used), and the best UPPER-BOUND value (best U-B).
With games with less than 70 actions, CD does not provide
any advantage. Instead with larger games CD improves
the performances halving the computational time. This is
because computing f(S) requires a longer time and CD
discards a number of supports. Notice that the best UPPER-
BOUND decreases as the game size increases. This is because
with large games the initial solution could be very far from
an equilibrium. Summarily, the algorithm solves with high
probability small-medium games within a short time and
with small probability large games within a reasonable time.

D. Anytime Analysis
We implemented anytime versions of LH, PNS, and SGC

and we compared them with respect to our algorithm in
terms of ε of the ε-Nash equilibrium returned at the deadline.
In our local search algorithm, we consider the strategies
found by the optimization problems minimizing ε∗ and
r∗ as ε-Nash equilibria and we compute the value of ε

as ε = max
i∈{1,2}

max
ak∈Ai

{vi,k − ∑j[pi(aj)vi,j]}. During the
execution of the algorithm we keep memory of the strategy
with the smallest ε and we return it at the deadline. Anytime
LH computes the value of ε related to the best response
vertices and returns the best found within the deadline. We
implemented two versions of anytime PNS algorithm with
ε∗ and r∗, called PNSε∗ and PNSr∗ respectively. They work
as our local search algorithm, except for the support enumer-
ation criterion. We implemented two anytime SGC versions.
The first, called SGCε∗, minimizes ε∗ and at the deadline
returns the optimal strategy (in terms of well-supported ε-
Nash) found so far. Then, given such strategy, the ε value
of the ε-Nash is determined. The second, called SGCr∗

works as the first, except that it minimizes r∗. We report
in Tab. IV the average of ε value of the strategies returned
by the algorithms. The two PNS versions have similar (poor)

performances and we report only PNSε∗. SGCε∗ is the
best non-local search anytime algorithm. Our local search
algorithm (denoted by LS in Tab. IV) outperforms it. Notice
that ε∗ provides better anytime performances than r∗.

VI. CONCLUSIONS AND FUTURE RESEARCH
We focused on the problem of computing a Nash equi-

librium in two-player general-sum games. The algorithms
provided by the literature (LH, PNS, and SGC) allow one
to solve within a short time a large number of game
instances generated by GAMUT. However, there are several
game classes whose instances cannot be solved by such
algorithms within a reasonable time. The challenging open
problem is the design of effective algorithms to tackle these
games. We proposed the first anytime algorithm based on
the combination of support enumeration methods and local
search techniques. We formulated the problem of searching
for a Nash equilibrium as a combinatorial optimization
problem where the search space is the joint support space
and the function to be minimized is such that its global
minima correspond to Nash equilibria. We designed several
dimensions for our algorithm and we evaluated them. We
showed that the best configuration of our algorithm solves,
with high probability, games that the known algorithms do
not solve within a reasonable time and that its anytime
performances are better than those provided by the best
anytime version of LH, PNS, and SGC.
In future works, our intention is to improve the ef-

ficiency of our algorithm (e.g., designing new objective
functions, combining several objective functions, developing
new heuristics and metaheuristics) and to design a support
enumeration based algorithm for solving efficiently both
easy and hard games by integrating PNS together with our
local search algorithm.

REFERENCES
[1] D. Fudenberg and J. Tirole, Game Theory. Cambridge, USA:

The MIT Press, 1991.

341

deadline algorithm
1 m 3 m 5 m 10 m

50 actions
7.53 ⋅ 10

−4
5.34 ⋅ 10

−4
2.06 ⋅ 10

−4 9.88⋅10−5 LSε∗
8.14⋅10−4 5.86⋅10−4 2.11⋅10−4 8.51 ⋅ 10

−5 LSr∗
1.70⋅10−3 1.12⋅10−3 7.46⋅10−4 6.72⋅10−4 SGCε∗

2.83⋅10−3 1.84⋅10−3 1.12⋅10−3 1.74⋅10−3 SGCr∗

6.02⋅10−2 5.58⋅10−2 2.78⋅10−2 2.34⋅10−2 LH
7.95⋅10−2 7.78⋅10−2 7.65⋅10−2 7.65⋅10−2 PNSε∗

60 actions
8.76 ⋅ 10

−4
6.58 ⋅ 10

−4
3.12 ⋅ 10

−4 9.97⋅10−5 LSε∗
9.21⋅10−4 8.01⋅10−4 4.33⋅10−4 9.58 ⋅ 10

−5 LSr∗
2.76⋅10−3 1.49⋅10−3 1.33⋅10−3 8.75⋅10−4 SGCε∗

2.17⋅10−3 2.80⋅10−3 2.14⋅10−3 2.60⋅10−4 SGCr∗

9.87⋅10−3 7.28⋅10−3 7.22⋅10−3 6.58⋅10−3 LH
4.55⋅10−2 4.24⋅10−2 4.24⋅10−2 3.62⋅10−2 PNSε∗

70 actions
9.86 ⋅ 10

−4
8.32 ⋅ 10

−4
4.55 ⋅ 10

−4
2.88 ⋅ 10

−4 LSε∗
1.03⋅10−3 9.79⋅10−4 6.41⋅10−4 3.67⋅10−4 LSr∗
2.28⋅10−3 1.58⋅10−3 1.33⋅10−3 1.11⋅10−3 SGCε∗

4.37⋅10−3 2.69⋅10−3 3.16⋅10−3 2.19⋅10−3 SGCr∗

4.37⋅10−2 2.69⋅10−2 3.16⋅10−2 2.19⋅10−2 LH
6.23⋅10−2 5.86⋅10−2 5.48⋅10−2 4.71⋅10−2 PNSε∗

80 actions
2.01⋅10−3 9.31 ⋅ 10

−4
6.73 ⋅ 10

−4
4.62 ⋅ 10

−4 LSε∗
1.67 ⋅ 10

−3 1.15⋅10−3 8.73⋅10−4 5.86⋅10−4 LSr∗
2.62⋅10−3 1.87⋅10−3 2.05⋅10−3 1.83⋅10−3 SGCε∗

1.08⋅10−2 9.08⋅10−3 7.98⋅10−3 6.42⋅10−3 SGCr∗

5.87⋅10−2 2.65⋅10−2 2.12⋅10−2 2.01⋅10−2 LH
5.03⋅10−2 3.74⋅10−2 3.55⋅10−2 3.30⋅10−2 PNSε∗

90 actions
3.12 ⋅ 10

−3
1.81 ⋅ 10

−3
7.90 ⋅ 10

−4
6.77 ⋅ 10

−4 LSε∗
4.71⋅10−3 3.25⋅10−3 9.92⋅10−4 8.74⋅10−4 LSr∗
5.59⋅10−3 4.24⋅10−3 2.63⋅10−3 3.26⋅10−3 SGCε∗

8.11⋅10−3 7.87⋅10−3 7.56⋅10−3 5.86⋅10−3 SGCr∗

5.27⋅10−3 3.76⋅10−3 3.34⋅10−3 3.02⋅10−2 LH
6.16⋅10−2 5.88⋅10−2 5.75⋅10−2 5.75⋅10−2 PNSε∗

100 actions
5.67⋅10−3 3.31 ⋅ 10

−3
1.27 ⋅ 10

−3
8.59 ⋅ 10

−4 LSε∗
6.83⋅10−3 4.04⋅10−3 3.74⋅10−3 1.51⋅10−3 LSr∗

4.10 ⋅ 10
−3 3.48⋅10−3 2.87⋅10−3 3.00⋅10−3 SGCε∗

1.34⋅10−2 1.90⋅10−2 1.81⋅10−2 1.30⋅10−2 SGCr∗

8.06⋅10−2 8.06⋅10−2 7.67⋅10−2 7.12⋅10−2 LH
9.41⋅10−2 9.18⋅10−2 9.18⋅10−2 6.81⋅10−2 PNSε∗

Table IV
AVERAGE OF ε OF THE ε-NASH EQUILIBRIA RETURNED BY THE
ANYTIME ALGORITHMS EXECUTED 5 TIMES PER EACH HARD

COVARIANTGAME-RAND INSTANCE; LS MEANS LOCAL SEARCH.

[2] X. Chen and X. Deng, “Settling the complexity of two-player
nash equilibrium,” in FOCS, Washington, USA, 2006, pp.
261–272.

[3] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Al-
gorithmic, Game Theoretic and Logical Foundations. Cam-
bridge, USA: Cambridge University Press, 2008.

[4] C. Lemke and J. Howson, “Equilibrium points of bimatrix
games,” SIAM J APPL MATH, vol. 12, no. 2, pp. 413–423,
1964.

[5] R. Porter, E. Nudelman, and Y. Shoham, “Simple search

methods for finding a Nash equilibrium,” in AAAI, 2004, pp.
664–669.

[6] T. Sandholm, A. Gilpin, and V. Conitzer, “Mixed-integer
programming methods for finding Nash equilibria,” in AAAI,
Pittsburgh, USA, 2005, pp. 495–501.

[7] E. Nudelman, J. Wortman, K. Leyton-Brown, and Y. Shoham,
“Run the GAMUT: A comprehensive approach to evaluating
game-theoretic algorithms,” in AAMAS, New York, USA,
2004, pp. 880–887.

[8] S. Ceppi, N. Gatti, and N. Basilico, “Computing Bayes-Nash
equilibria through support enumeration methods in Bayesian
two-player strategic-form games,” in IAT, Milan, Italy, 2009,
pp. 541–548.

[9] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani,
Algorithmic Game Theory. Cambridge, USA: Cambridge
University Press, 2007.

[10] C. Daskalakis, P. Goldberg, and C. Papadimitriou, “The
complexity of computing a Nash equilibrium,” in STOC,
Seattle, USA, 2006, pp. 71–78.

[11] W. Michiels, E. Aarts, and J. Korst, Theoretical Aspects of
Local Search. Berlin, Germay: Springer, 2007.

[12] C. Daskalakis, A. Mehta, and C. H. Papadimitriou, “A note on
approximate Nash equilibria,” THEOR COMPUT SCI., vol.
410, no. 17, pp. 1581–1588, 2009.

[13] E. Aarts and J. K. Lenstra, Local Search in Combinatorial
Optimization. Princeton, USA: Princeton University Press,
2003.

[14] H. H. Hoos and T. Stutzle, Systematic vs. Local Search for
SAT. Berlin, Germany: Springer, 1999.

[15] S. Prestwich and C. Quirke, “Local search for very large sat
problems,” in SAT, Vancouver, Canada, 2004.

[16] A. Fabrikant, C. H. Papadimitriou, and K. Talwar, “The
complexity of pure nash equilibria,” in Proc. STOC, Chicago,
USA, 2004, pp. 604–612.

[17] P. W. Goldberg, “Bounds for the convergence rate of ron-
adomized local search in a multiplayer load-balancing game,”
in Proc. PODC, St. John, Canada, 2004, pp. 131–140.

[18] Y. Vorobeychik and M. P. Wellman, “Stochastic search meth-
ods for nash equilibrium approximation in simulation-based
games,” in AAMAS, 2008, pp. 1055–1062.

[19] J. W. Chinneck, Feasibility and Infeasibility in Optimization:
Algorithms and Computational Methods. Berlin, Germay:
Springer, 2007.

[20] A. MCLennan and J. Berg, “The asymptotic expected number
of Nash equilibria of two player normal form games,” GAME
ECON BEHAV, vol. 51, no. 2, pp. 264–295, 2005.

[21] ILOG Inc., http://ilog.com.sg/products/cplex, 2010.

[22] AMPL Opt. LLC, http://www.ampl.com, 2010.

342

