
Fast Learning from Distributed Datasets without Entity Matching

Giorgio Patrini1,2, Richard Nock2,1, Stephen Hardy2, Tiberio Caetano3,1,4

Australian National University1, NICTA2, Ambiata3, University of New South Wales4

{giorgio.patrini, richard.nock, stephen.hardy}@nicta.com.au, tiberio.caetano@gmail.com

Abstract
Consider the following scenario: two datasets/peers
contain the same real-world entities described us-
ing partially shared features, e.g. banking and
insurance company records of the same customer
base. Our goal is to learn a classifier in the cross
product space of the two domains, in the hard
case in which no shared ID is available –e.g. due
to anonymization. Traditionally, the problem is
approached by first addressing entity matching and
subsequently learning the classifier in a standard
manner. We present an end-to-end solution which
bypasses matching entities, based on the recently
introduced concept of Rademacher observations
(rados). Informally, we replace the minimisation
of a loss over examples, which requires entity
resolution, by the equivalent minimisation of a
(different) loss over rados. We show that (i) a
potentially exponential-size subset of these rados
does not require to perform entity matching, and
(ii) the algorithm that provably minimizes the loss
over rados has time and space complexities smaller
than the algorithm minimizing the equivalent
example loss. Last, we relax a key assumption, that
the data is vertically partitioned among peers — in
this case, we would not even know the existence of
a solution to entity resolution. In this more general
setting, experiments validate the possibility of
beating even the optimal peer in hindsight.

1 Introduction
Learning from massively distributed data collections and
multiple information sources has become a pivotal problem,
yet it faces critical challenges, among which is the fact that it
relies on reconstructing consistent examples from diverse fea-
tures distributed between different data handling peers. Ex-
haustive search to solve this problem is simply not scalable,
nor communication efficient, and sometimes not even accu-
rate [Estrada et al., 2010; Zhang et al., 2015].
— A key technical message of our paper is:

Entity resolution can be bypassed to carry out supervised
learning almost as accurately as if its solution were known.

peer 3

ex
am

p
le
s

not shared shared

features

peer 1 peer 2

??

Figure 1: Schematic view of our setting (VP), with p = 3
peers. Some features (cyan) are described in each peer and
one these shared features is a class. Non-shared features are
split among peers. A so-called total sample S is represented
by the red rectangle. All peers see different views of the same
examples, but do not know who is who (”?”).

A main motivation of this work comes from the reported
experience that combining features from different sources
leads to better predictive power. For instance, insurance and
banking data together can improve fraud detection; shopping
records well complement medical history for estimating risk
of disease [Tsui et al., 2003]; joining heterogeneous data
helps prediction in genomics [Lanckriet et al., 2004; Yaman-
ishi et al., 2004]; security agencies integrate various sources
for terrorism intelligence [Sweeney, 2005; Christen, 2006;
Sproull et al., 2015].

A typical data fusion framework relies however on a known
map between entities [Bleiholder and Naumann, 2008], i.e.
peers have partially different views of the same examples. In-
stead, we assume the datasets do not share a common ID, as
shown in Figure 1; that is, for example, the case when data
collection of was performed independently by each peer, or
when sources were deliberately anonimized. Thus, we can
think the data as vertically partitioned (VP). Entity resolution
(ER), or entity matching [Christen, 2012], would be the tra-
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Figure 2: Learning on top of ER (left) or with rados (right).

ditional approach for reconciling entities with no shared ID1.
It approximates a JOIN operation, assuming that some of the
attributes are shared, e.g., age-band, gender, postcode (etc.),
and hence can be used as “weak IDs”. Most techniques for
ER are based on similarity functions and thresholding: can-
didate entities are selected as matches when their similarity
is above a threshold. Both components can be tuned on some
ground truth matches and effectively enhanced with learning
techniques [Bilenko and Mooney, 2003; Christen, 2012]. The
various metrics of ER encompass lots of different parameters,
including generality, accuracy, soundness, scalability, paral-
lelizability [Rastogi et al., 2011]. The standard pipeline for
learning with ER is depicted in Figure 2 (left): (1) entities
are matched based on similarity and heuristics, (2) they are
merged in one unique database and (3) a model is learnt on
the joint data. Common issues in fusion, such as conflicts
and heterogeneity [Bleiholder and Naumann, 2008], are not
considered in this work.

From a high level view, ER integrates data as a pre-process
for other tasks. When it comes to learning from ER’ed data,
small changes in ER can have large impact on evaluating clas-
sifiers, even for simple classifiers as linear models. To see
this, suppose we are in the toy example of Table 1. Here,
all shared variables have the same values, so entity match-
ing has two potential solutions (notice that one of the shared
variables is class c). One, say ER1, is matching e1 with
e′1 and e2 with e′2. We denote the examples obtained by
e11

.
= ((1,−1, 1), 1) and e22

.
= ((−1, 1, 1), 1) (an example

is a pair (observation, class)). The other solution, say ER2, is
matching e1 with e′2 and e2 with e′1. We denote the examples
obtained by e12

.
= ((1, 1, 1), 1) and e21

.
= ((−1,−1, 1), 1).

Now, consider linear classifier θ = (1, 1, 1) ∈ R3; the
class it gives is the sign of its inner product with an obser-
vation, θ(z)

.
= sign(θ>z). While θ classifies perfectly on

{e11, e22} (zero error), it classifies no better than random on
{e12, e21} (error 50%).

To cope with (VP) data, we use a recent trick for learn-
ing from private data [Nock et al., 2015]: examples are not
necessary to learn an accurate linear classifier. We stress the
fact that “accurate” refers to the quality of the class predic-
tion from observations. The input of the algorithm consists of
Rademacher observations, rados. A rado is just a sum, over a
subset of examples, of the observations times their class. Sur-
prisingly, we can learn with data in this form and, moreover,

1This is clearly non trivial: if just two rows in each dataset have
the same exact values for the shared features across the p peers, this
yields 2p possible matchings for the two examples involved.

Peer 1 Peer 2
shared

x1 x3 c
e1 1 1 1
e2 -1 1 1

shared
x2 x3 c

e′1 -1 1 1
e′2 1 1 1

Table 1: A simple case of (VP), with p = 2 peers, with two
shared variables x3 and c (the class to predict). This toy ex-
ample has binary description features and a binary shared fea-
ture, but this restriction does not need to hold in the general
case. For example, each shared feature can be any categori-
cal/ordinal feature, like “postcode”, “age-bracket”, etc.

the output classifier does not need any post-processing since
it is the same as if we were learning with examples.

Contributions — Our contribution starts from noticing
that many rados are invariant to the selection of different solu-
tions for entity resolution. For example, consider again Table
1. Since all classes are positive, computing a rado is just sum-
ming observations. Let πij,kl be the rado that sums those of
examples eij and ekl. Then, surprisingly, regardless of the
solution to ER, this rado is the same:

(E1) π11,22 = (1,−1, 1) + (−1, 1, 1)

= (0, 0, 2)

= (1, 1, 1) + (−1,−1, 1) = π12,21 (E2) .

This, as we show, always holds in the (VP) setting: there
exists a huge, i.e., of potential exponential size, set of rados
that match the set that could be built knowing the true entity
resolution. We give the algorithm that builds these rados. It is
easily parallelizable and requires sublinear communication,
i.e. the amount of information that transits is no larger — and
may be much smaller — than the size of all peers’ data.

These “ideal” rados are not just interesting per se: learn-
ing from them (Figure 2, right) is both efficient and accurate.
We show that using them leads to approximating the classi-
fier that would be optimal on the set of all (ideally ER’ed)
examples. This involves three technical contributions:

• The first is an elementary proof that the minimisation of
the Ridge regularized square loss [Hoerl and Kennard,
1970] on examples is equivalent to the minimisation of
a regularized loss on rados, which we call the M-loss.

• We then give the closed-form solution for the classifier
minimizing the M-loss. Surprisingly, it shows that the
minimisation of the regularized M-loss, over the com-
plete (possibly exponential-size) set of “ideal” rados can
be done not just in polynomial time: it is in general
faster than the minimization of the Ridge regularized
square loss over examples.

• Finally, the optimal M-loss classifier learnt using only
the set of “ideal” rados converges — as the number
of shared features increases — to the minimizer of the
Ridge regularized square loss over all ideally ER’ed ex-
amples. In other words, as the number of shared fea-
tures (or their modalities) increases, we are guaranteed
to converge to the best classifier learned over examples.



Last, but not least, while we focus on the two-classes set-
ting, description features need not be boolean. There is in
fact no restriction apart from the fact that shared features are
treated as ordinal instead of plain real: if one feature had as
many modalities as there are examples, then there would be
no need to address ER. The rest of this paper is as follows.
Section §2 provides preliminaries. § 3 follows that shows
how to learn from distributed data to minimise, indirectly, the
Ridge regularized square loss over the ER’ed complete data.
§ 4 introduces a more realistic learning setting, then used in
the experimental analysis of § 5. Finally, § 6 discusses our
approach and § 7 concludes the paper.

2 Preliminaries
Learning setting We let [n]

.
= {1, 2, . . . , n} for n ∈ N∗;

boldfaces like x indicate vectors, whose coordinates are de-
noted as xi. Notation 1{.} is the indicator function. We
briefly recall the task of binary classification with linear mod-
els θ as learning a predictor for label (or class) y ∈ {±1},
from a total (learning, training) sample S

.
= {(xi, yi), i ∈

[m]}. Each example is an observation-label pair (xi, yi) ∈
X × {±1}, with X ⊆ Rd the feature space, and it is drawn
i.i.d. from an unknown distribution. We also denote X

.
=

×d
k=1Xk, the cartesian product of its component spaces. We

reserve the word entity for a generic record in a dataset, the
object of matching, and attributes or features to its fields.

Our setting departs from the standard setting in what fol-
lows. Instead of one total training sample, we have p
(sub)samples, Sj of size mj , j ∈ [p] for some p > 1. Each
one is defined in its own feature space Xj .

= ×dj

k=1Xjk , where
jk ∈ [d],∀k. To get a simple case of this framework, shown
in Figure 1, one may see each Sj

.
= {(xj

i , y
j
i ), i ∈ [mj ]}

handled by a peer Pj . Throughout the paper, subscripts i will
refer to an example or entity, while superscripts j to a peer.
We rely on the following assumption:

(A) The class and a subset of features J ⊆ {Xk}dk=1 are
shared by all peers. Each other feature is exclusive to
one peer.

Hence, there exists dim(J) + 1 columns that represent the
same set of attributes among peers, and one of them is the
class. Each of the dimensions of J is in all Xjs. This is a
realistic assumption for the features in J: in the (VP) setting,
which is a gold standard of database frameworks, the domain
is vertically partitioned for the non-shared features, implying
mj = m,∀j ∈ [p]. In this case, there exists a (unknown) one-
to-one mapping between the peers’ rows. The shared label
might be harder to justify, since it is the attribute we aim to
predict. However, as argued in Section 6, if at least one peer
has classes than all peers can get their labels as well without
entity resolution, by the use of algorithms that learn with label
proportions [Patrini et al., 2014; Quadrianto et al., 2009].

Rademacher observations In the standard classification
model, a Rademacher observation (rado) is a simple linear
transformation of the examples in sample S [Nock, 2015;
Nock et al., 2015]. Now, let σ ∈ Σm

.
= {−1, 1}m. Then a

rado is πσ
.
=
∑m

i=1 1{yi = σi} yi ·xi, where yi ·xi is termed

an edge vector. One of the 2m rados, πy =
∑m

i=1 yi · xi,
(σ = y), is a sufficient statistic w.r.t. class y for a wide set
of losses; see the mean operator [Patrini et al., 2014, 2016a].
In our distributed setting, we extend the definition as follows.
We let s ∈ J denote a signature, i.e. a vector of shared at-
tributes, y ∈ {±1} and let j index peer Pj . A rado is then:

πj
(s,y)

.
=

m∑
i=1

1{projJ(xj
i ) = s ∧ yji = y} yji · x

j
i , (1)

where projI(z) denotes the restriction of a vector z to I. In
short, πj

(s,y) sums edge vectors local to Pj whose examples
match signature s and class y. Intuitively, we can conceptual-
ize those rados and expressing statistics locally sufficient for
the examples sharing the same signature s in the data of Pj .
Let F(z) ⊆ X be the set of features of z. We also define,
for any F′ ⊇ F(z), liftF′(z) to be the vector z′ described us-
ing F′ such that projF(z)(z

′) = z and projF′\F(z)(z
′) = 0.

While projF(z) removes coordinates of z, liftF′(z) “com-
pletes” the coordinates of z with zeroes.

By analogy with entity resolution [Whang et al., 2009], we
define block rados as rados, lifted to X, that are sums of edges
matching a particular signature and class in all peers.

Definition 1 For any s ∈ J, y ∈ {−1, 1}, let m(s,y) be the
number of examples matching signature (s, y). Then a basic
block (BB) rado for (s, y) is

π(s,y)
.
=

p∑
j=1

liftX(πj
(s,y))−m(s,y)(p− 1) · liftX(y · s) .

We need to subtract the second term to take into account that
s has already been summed up m(s,y) times by each peer.
Let J∗

.
= {(s, y) ∈ J × {−1, 1} : ∃j ∈ [p],πj

(s,y) 6= 0}.
This latter set, which can easily be computed from all peers,
has cardinal m∗

.
= |J∗| ≤ m, and even m∗ � m when

few features are shared. We let RB
.
= {πvi ,∀i ∈ [m∗]}

denote the ordered set of each BB rado, each coordinate of
v = (s, y) being in one-one correspondence with an element
of J∗. A superset of RB is interesting, that considers all sums
of vectors from RB:

R∗
.
=

{∑
i∈U

πvi ,∀U ⊆ [m∗]

}
. (2)

We call R∗ the set of block rados. Notice that we may have
|R∗| = Ω(2

∑
j |S

j |). It is therefore intractable in general to
explicitly compute R∗. However, |RB| = O(

∑
j |Sj |) and to

compute it, we just need the set of πj
(s,y), hence a communi-

cation complexity that can be much smaller than
∑

j |Sj |.

3 Building and learning from BB rados
Why and how can we use rados to learn accurate classifiers?
This first subsection does not concern the distributed setting.
Instead, it summarizes and comments findings from [Nock et
al., 2015; Nock, 2015].



Example vs rado losses Learning θ on S is done by min-
imizing a loss function. Here, we consider the Ridge reg-
ularized square loss [Hoerl and Kennard, 1970] (Γ is sym.
positive definite, SPD),

`sql(S,θ; Γ)
.
=

1

m
·
∑
i

(1− yiθ>xi)
2 + θ>Γθ . (3)

It is crucial to remark that this loss is described over the total
sample S of examples (see the red rectangle in Figure 1). This
is the loss we want to minimize, exactly or approximately.
One reason we choose this loss is that in the standard classi-
fication framework, it admits a simple closed form solution:

θ?ex
.
= arg min

θ
`sql(S,θ; Γ) =

(
XX> +m · Γ

)−1
πy , (4)

where X
.
= [x1|x2| · · · |xm], and so, XX> =

∑
i xix

>
i . Re-

mark that θ?ex involves πy , one particular rado2. For any
Σ′m ⊆ Σm

.
= {−1, 1}m, we let RS,Σ′

m

.
= {πσ : πσ ∈ Σ′m}

denote the set of rados that can be crafted from Σ′m using S.

Definition 2 The M-loss over RS,Σ′
m

of classifier θ is:

`M(RS,Σ′
m
,θ)

.
= −

(
EΣ′

m
[θ>πσ]− 1

2
· VΣ′

m
[θ>πσ]

)
, (5)

where expectation and variance are computed with respect to
the uniform sampling of σ in Σ′m.

Eq. (5) resembles a Markowitz mean-variance criterion
[Markowitz, 1952] —with no coefficient for the risk aver-
sion. What this means is that a good classifier trained on
rados should have large “return” and small “risk”, where the
risk is the variance of its predictions and the return is its inner
product with the expected rado.

The next Theorem shows that what was known for the lo-
gistic loss in [Nock et al., 2015] also holds for the square
loss: `sql(θ) (other dependences omitted) is equal to a strictly
increasing function of `M(θ), described over rados, for any
θ. Hence, minimizing `sql(θ) over examples is equivalent
to minimizing `M(θ) for the same classifier. The proof of
the Theorem is interesting in itself as it simplifies the long
derivation of the more general equivalence in [Nock, 2015].

Theorem 3 Let Σm
.
= {−1, 1}m. Then, for any S, any Γ

and any θ, `sql(S,θ; Γ) = 1 + (4/m) · `M(RS,Σm
,θ; Γ) with

`M(RS,Σm
,θ; Γ) = `M(RS,Σm

,θ) +
m

4
θ>Γθ . (6)

Proof First, we remark that EΣm
[θ>πσ] = θ>EΣm

[πσ] =
(1/2) · θ>πy , since each example participates to half of the

2Notice here its sufficiency w.r.t. y, as labels do not appear any-
where else in the formula.

2m rados. Letting ṽ .
= 2m+2 · VΣm [θ>πσ], we also have

ṽ = 4 ·
∑

σ∈Σm

(
θ>πσ −

1

2
· θ>πy

)2

=
∑

σ∈Σm

(∑
i

σiθ
>xi

)2

=
∑

σ∈Σm

 m∑
i=1

(θ>xi)
2 +

e∑
i=1

m
∑
i′ 6=i

σiσi′θ
>xiθ

>xi′


= 2m ·

m∑
i=1

(θ>xi)
2 +

m∑
i=1

∑
i′ 6=i

vii′ · θ>xiθ
>xi′ , (7)

with vii′
.
=
∑

σ∈Σm
σiσi′ . Now, for any i 6= i′, σiσi′ takes

exactly the same number of times value +1 and value −1,
and so vii′ = 0,∀i 6= i′. We get from eq. (7) VΣm [θ>πσ] =
(1/4) ·

∑m
i=1(θ>xi)

2 = (1/4) ·
∑m

i=1(yiθ
>xi)

2. Finally,

1 +
4

m
· `M(S,Σm,θ)

= 1− 2

m
·

m∑
i=1

yiθ
>xi +

1

m
·

m∑
i=1

(yiθ
>xi)

2

=
1

m
·
∑
i

(1− yiθ>xi)
2
2 , (8)

and we get Theorem 3 by integrating Ridge regularization.

Hence, minimizing the Ridge regularized square loss over ex-
amples is equivalent to minimizing a regularized version of
the M-loss, over the complete set of all rados. This set has
exponential size. A possibility is to randomly subsample the
set, along with proving good uniform convergence bounds for
the M-loss — this can be done in the same way as for the lo-
gistic loss [Nock et al., 2015]. However, in the case of the
square loss, greed pays twice: learning from all rados in R∗
may be both cheap (computationally) and accurate.

Computation and optimality of R∗ In our distributed con-
text, we do not have access to all rados because we do not
assume to known the entity matching function. Yet, we are
going to show a first result which is, in a sense, stronger:
R∗ always belongs to RS,Σm

. Therefore R∗ —potentially
exponential-size— gives us a set of rados that would have
been built from S, had we known the perfect solution to entity
matching. So, even without carrying out entity matching, we
have access to a potentially huge set of “ideal” rados which
we can use to learn θ via the minimization of `M(.,θ; Γ).
Furthermore, there exists a simple algorithm to build RB.

Algorithm 1 summarizes the protocol. Each peer Pj

crafts rados upon request of a particular signature and la-
bel; “CRAFT(s, y) ” symbolizes a message sent, expecting
πj

(s,y) in return. Remark that the computation of each rado
for each peer can easily be performed in parallel. We now
show one of the main results of this paper: Algorithm 1 al-
ways provides the basis for the set R∗ of the “ideal” rados.



Algorithm 1 RADOCRAFT(P1,P2, ...,Pp)

Input Peers P1,P2, ...,Pp;
Step 1: Let RB ← ∅;
Step 2: for s ∈ J, y ∈ {±1}:

2.1: Let π(s,y) ← 0 ∈ Rd;
2.2: for j ∈ [p]:

2.2.1: π(s,y) ← π(s,y) +liftX(CRAFT(s, y) Pj)
2.3: RB ← RB ∪ {π(s,y)};

Return RB;

Theorem 4 In setting (VP), for any p ≥ 2, any S, any J. Let
RB be the output of Algorithm 1 and let R∗ its superset by eq.
(2). Then, R∗ ⊆ RS,Σm .

Proof (sketch) The Theorem follows once three simple
facts are established in the (VP) setting: (a) the true entity
matching exists, (b) any BB rado for pair (s, y) would be
obtained as a rado summing the contributions of all examples
in S matching the corresponding signature s and class y, (c)
we obtain RB ⊆ RS,Σm

, from which follows the Theorem’s
statement with eq. (2) and the fact that any sum of a subset of
rados in RB would also be in RS,Σm since an example cannot
match two distinct couples (signature, class).

Learning from all rados of R∗ How do we minimize the
regularized M-loss and, more importantly, which subset of
rados from R∗ shall we use? As already discussed, we
choose “greediness” against randomization: instead of pick-
ing a (small) random subset of R∗, we want to use them all
because we know that all of them are “ideal” or close to be-
ing so via Theorems 4. Recall that |R∗|may be of exponential
size (in m, d, |J∗|, etc.). We now show that if we consider all
of R∗, the optimal θ?rad of `M(R∗,θ; Γ) has an analytic ex-
pression which depends only on the rados of RB. In short, it
is even faster to compute than θ?ex from S in eq. (4), and can
be directly computed from the output of Algorithm 1.

Theorem 5 Let θ?rad
.
= arg minθ `M(R∗,θ; Γ) (eq. (6)).

Then

θ?rad =
(
BB> + dimc(B) · Γ

)−1
B1 , (9)

where B stacks in columns the rados of RB, and dimc(B) is
the number of columns of B.

Proof The proof uses the following trick: consider any sam-
ple S′ such that its edge vectors match the basic block rados.
Remark that XX> =

∑
i(yixi)(yixi)

> in eq. (4) depends
only on edge vectors, and so, since πy = B1, the optimal
square loss classifier on S′ is θ?rad in eq. (9), which, through
Theorem 3, is also the optimal classifier on `M(R∗,θ; Γ).

When m∗ = m, each element of RB is in fact an example,
and we retrieve eq. (4). One consequence of Theorem 5 is
the following convergence property which we sketch: in the
(VP) setting, for any ε ≥ 0, there exists a minimal size for J∗
such that θ?rad will be ε-close to θ?ex, where the closeness can

Algorithm 2 DRL(P1,P2, ...,Pp; Γ)

Input Peers P1,P2, ...,Pp, SPD matrix Γ, γ > 0;
Step 1: B← Column(RADOCRAFT(P1,P2, ...,Pp));
Step 2: θ ←

(
BB> + γ · Γ

)−1
B1;

Return θ;

be measured by ‖θ?rad − θ?ex‖2 or |cos(θ?rad,θ
?
ex)|. The state-

ment of DRL (Distributed Rado-Learn) is given in Algorithm
2. In Step 1, “column(.)” takes a set of vectors and put them
in column in a matrix.

4 A more realistic setting
What happens if we drop the assumption of data being verti-
cally partitioned (VP)? Or equivalently, what if examples are
not shared by all peers ? This is a much more realistic sce-
nario. Since there is no shared ID — and the data may have
been anonymized — we are not even in a situation where we
can guarantee that a specific client of the bank is, or is not, a
client of the insurance company. Thus, there may be signifi-
cant unknown data “to reconstruct” the total sample S, but we
do not know which specific examples have missing features.
In this most general setting (G), it is possible to show that a
very simple transformation of the rados, involving only the
shared features, has in expectation the same properties so far
described and for which Theorem 4 holds in expectation. Due
to lack of space, details are left to a longer version of the pa-
per [Patrini et al., 2016b]. However, in the next Section, we
provide an experimental validation of our approach in both
the settings.

5 Experiments
Algorithms We have evaluated the leverage that DRL pro-
vides compared to the peers, that would learn using only
their local dataset. Each peer Pj estimates learns through
a ten-folds stratified cross-validation (CV) minimization of
`sql(S

j ,θ;γ · Iddj
) (see eq. (4)), where γ is also locally op-

timized through a ten-folds CV in set G .
= {.01, 1.0, 100.0}.

DRL minimizes `M(R∗,θ; Γ) (solution in eq. (9)) where RB

is built using RADOCRAFT, with the set of all peers as input.
We have carried out a very simple optimisation of the regu-

larisation matrix of DRL as a diagonal matrix which weights
differently the shared features, Γ

.
= Diag(liftX(projJ(1)))+

γ · Diag(liftX(projX\J(1))), for γ ∈ G. γ is optimized by
a 10-folds CV on I∗. CV is performed on rados as follows:
first, RB is split in 10 folds, RB,`, for ` = 1, 2, ..., 10. Then,
we repeat for ` = 1, 2, ..., 10 (and then average) the following
CV routine:

1. DRL is trained using RB\RB,`;

2. DRL’s solution, θ?rad, is evaluated on “test rados” by
computing `M(RB,`,θ

?
rad; Γ).

The expression of Γ for rados exploits the idea that the esti-
mations related to a shared feature can be much more accurate
than for another, non-shared feature.



Domain generation We ran experiments on a dozen UCI
domains. Only two are fully detailed here, due to reason
of space: they are ionosphere (m × d) = (351 × 33) and
musk = (6598× 166) — the others appears in [Patrini et al.,
2016b]. For each domain, we have varied (i) the number of
peers p, (ii) the number of shared features dim(J), and (iii)
the number b of numeric modalities (“bins”) each shared fea-
ture was reduced to (it controls the size of I∗). The training
sample is split among peers, each keeping record of I and
its own features (non-shared features are evenly partitioned
among peers). Finally, for some ps ∈ [0, 1], each peer Pj

selects a proportion ps of its examples index and for each of
them, another peer Pj′ , chosen at random, gets the example
as well (on its own set of features Xj′ ). This policy imple-
ments (G). When ps = 0, this is setting (VP). We then run
all algorithms for each value p,dim(J), b, ps. As we shall
see, b appears to have a relatively small influence compared
to the other factors, so we mainly report results combining
various values for p,dim(J) and ps, for the range of values
of p,dim(J) specified in the corresponding Tables (3, 4), and
for ps ∈ {0.0, 0.2}. We have chosen b = 4 for all domains,
except when it is not possible (if for example all features are
boolean), in which case we pick b = 2.

Metric We used two metrics. The first,

∆
.
= p̂err(DRL)−min

j
p̂err(P

j) (∈ [−1, 1]) ,

is the test error for DRL minus that of the optimal peer in
hindsight (since we consider the peer’s test error). when
∆ < 0, DRL beats all peers. For example, Table 3 (left) pro-
vides the results obtained on UCI domain ionisphere. We see
that for almost all combinations of p and dim(J), DRL beats
all peers. We give for each domain the smallest test error ob-
tained for a peer among all runs for each domain: this is an
indication of the room of improvement for DRL, and it also
shows that in general, at least some (and in fact most) peers
were always very significantly better than random guessing,
a safe-check that DRL is not just beating unbiased coins.

To evaluate the statistical significance, we compute

q
.
= proportion of peers statistically beaten by DRL .

To compute the test, we use the powerful Benjamini-
Hochberg procedure on top of paired t-tests with q∗ =
p-val = 0.05, [Benjamini and Hochberg, 1995]; q = 0.8
surface helps see when DRL statistically beats all peers. For
example, Table 3 (right) displays that DRL does not always
statistically beat all peers when ∆ < 0, yet it manages to
stastically beat all of them in a wide range of p, dim(J) val-
ues. Table 4 display that DRL tends to systematically beat all
peers when p is sufficiently large.

Results To summarize our results, all domains display that
there exists regimes (p,dim(J)) for which DRL improves on
all peers, in some cases significantly. Sometimes, the im-
provement is sparse, but sometimes it is quite spectacular and
in fact (almost) systematic. Drilling down into the results dis-
plays two patterns that seem to be quite general: the first is

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 2  3  4  5

p
e
r
r
(
D
R
L
)

#bins per shared f.

 0.25

 0.3

 0.35

 0.25  0.3  0.35

D
R
L

Oracle

Table 2: Left: test error of DRL on domain ionosphere, as a
function of the number of bins, aggregating all results vary-
ing p and dim(J); the green line denotes the average values.
Right: scatterplot of the test error of DRL (y) vs. that of the
Oracle (learning using the complete entity-resolved domain).
Green in the dark grey area denote better performances of
DRL; blue in the light grey area denote better performances
of the Oracle (but not statistically better). Red in the white
area denote statistically better performances of the Oracle
(filled points: ps = 0.2; empty points: ps = 0.8).

when the so-called Oracle, i.e. the learner that learns from
the complete training fold before it is split among peers —
and therefore knows the solution to entity matching —, has
almost optimal error, but local peers are in fact very far from
this optimum. This indicates that many features, properly
combined, are necessary to attain the best performances. In
such cases, DRL can manage to have performances close to
the Oracle, and yields to a gap in classification compared to
peers which can properly be huge — sometimes, DRL’s test
error is smaller than that of the best peer by more than 20%
—. The second pattern is that for many domains, there is a
threshold value for p beyond which DRL progressively im-
proves on all peers (statistically). These two patterns seems to
advocate that DRL may represent a very significant leverage
of peer’s data for moderately to massively distributed learning
problems, when entity resolution is not available.

To analyze further our results, Table 2 (left) displays that
binning indeed does not affect significantly DRL on average,
which is also good news, since it means that there is no re-
striction on the shared features for DRL to perform well:
shared features can be binary, or categorical with any num-
ber of modalities. Additionally, Table 2 (right) compares the
performances of DRL with respect to those of the Oracle on
a domain for which DRL obtains somehow “median” perfor-
mances among all domains, sonar, (m × d) = (208 × 60).
The Oracle (10-folds CV from the total ER’ed S) is idealis-
tic since in general we do not know the solution to ER, yet
it gives clues on how close DRL may be from the “graal”.
Interestingly, DRL comes frequently under the statistical sig-
nificance radar (α = 0.05). In notable cases (more frequent
as ps increases), DRL beats Oracle — but not significantly.
Aside from theory, these are good news as DRL does not as-
sume ER’ed data, and uses an amount of data which can be
∼ p2 times smaller than Oracle.

6 Discussion and related work
We remark that our framework is not formally comparable
with ER, since the two address different problems. On one
hand, ER has a much broader applicability than the prob-
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lem object of this paper; learning on distributed datasets is
less general than ER: in fact, we show a solution that by-
passes ER. On the other hand, learning-based ER [Bilenko
and Mooney, 2003] as well as manifold alignment techniques
[Lafon et al., 2006] are viable only knowing some ground
truth matches — which are not required for working with ra-
dos. From another perspective, in concert with the open is-
sues in [Getoor and Machanavajjhala, 2012], we study ER as
component of a pipeline for classification, and highlight how
matching is not necessary for the purpose of learning.

In spite of those considerations, we can still draw compar-
isons with methods that learn on top of data merged through
ER (Table 5). In both settings, no ID is shared between
datasets but some attributes must be so, in order to allow en-
tities comparison for matching or for building rados. Obvi-
ously, entity matching does not require the labels to be one
of those shared attributes, while this is a fundamental hypoth-
esis of our approach. Although, it is not as restrictive as it
might seem at first: if just one peer has labels, then all can
obtain labels on their own data, via learning from label pro-
portions [Quadrianto et al., 2009; Patrini et al., 2014]: the
label handling peer computes the label proportions per each
block; the “bags” are defined by examples matching a partic-
ular signature. Proportions are then shared among all other
peers, which can train a classifier with them so as to estimate
a label for each observation.

To discuss time complexity, let us consider a simplified
problem with only 2 peers in the (VP) scenario. In terms
of complexity of fusion, if we assume that examples are uni-
formly distributed in the blocks, each block has size m/m?.
DRL builds each block rado in time O(m/m?), with total
cost linear inm. ER takesO((m/m?)2 ·Tsim) to match enti-
ties in each of the m? blocks, where Tsim is the cost of eval-
uation any similarity function; learning-based methods spend
additional time for training; advanced blocking strategies can
reduce the average complexity [Bilenko et al., 2006; Whang
et al., 2009; Whang and Garcia-Molina, 2012].

Most literature on distributed learning is concerned with
limiting communication and designing optimal strategies for
merging models [Balcan et al., 2012; Liu and Ihler, 2014];
beside that, previous works focus on horizontal split by ob-
servations, with few exceptions [Liu and Ihler, 2012]. In con-
trast, we exploit what is sufficient to merge about the data.
The communication protocol is extremely simple. Once ra-
dos are crafted locally, they are sent to a central learner in
one shot. By Theorem 5, only d-dimensional m? basic block
rados are needed. Data is not accessed anymore and learning
takes place centrally. Moreover, rados help with data com-
pression, being m?×d, m? � m the problem size. With ER
we learn from all entities, with a total size of m× d.

Learning on data described by different feature sets is the
topic of multiple view learning and co-training [Blum and
Mitchell, 1998; Sindhwani et al., 2005]. To the best of our
knowledge, co-training with unknown matches has not been
addressed before. [Brefeld et al., 2006] presents a multi-view
distributed algorithm with co-regularization; although it re-
quires matches for all unlabelled examples.

In settings with multiple data providers, privacy can be cru-
cial. The peers have to trade off model enhancements and in-

Metric ER + Learning Algorithms 1+2
Hp: shared IDs no no
Hp: shared variables necessary necessary
Hp: shared labels no may be relaxed
Fusion / RADOCRAFT O(m2/m? Tsim) O(m)
Communication m× d m? × d
Learning problem m× d m? × d
Privacy complex many guarantees

Table 5: Multiple metrics of comparison between learning on
top of ER and our approach. Time complexity are estimated
for 2 peers in the (VP) scenario, assuming all blocks of equal
size. “Hp” is short for hypothesis. See Section 6 for details.

formation leaks. A learner receives rados to train the model;
this can be done by one of the peers, or by a third party — par-
alleling multi-party ER scenarios [Christen, 2006]. The only
information sent through the channel consists of rados, while
examples, with their individual sensitive features, are never
shared. Hardness results on reconstruct-ability of examples
have been proven, along with NP-HARD characterizations,
and protection in the sense of differential privacy [Nock et
al., 2015]. Regarding ER, since matching has the potential of
de-anonimizing the entities, privacy is usually a very relevant
issue to address [Christen, 2006]. However, solutions are not
straightforward, as proven by the vast amount of research on
the topic [Vatsalan et al., 2013].

Even assuming labelled examples, no (observation, label)
pair is actually available for training, and thus the task can be
seen as weakly supervised [Garcıa-Garcıa and Williamson,
2011; Patrini et al., 2016a]. Although, a set of aggregate
quantities turns out to be enough for the task. Theorem 3 ex-
presses a form of sufficiency of the whole set of rados with
regard to the square loss; the analogue property is known
for logistic loss in [Nock et al., 2015]. One particular rado,
(1/m) · π, mean operator, is formally proven a sufficient
statistics for the class for a wide set of losses [Patrini et al.,
2014, 2016a]. This work, along with predecessors, shows
how the interplay between aggregate statistics and losses can
lead to effective solutions to hard learning problems.

7 Conclusion
Entity matching addresses a very general but difficult prob-
lem, and in the comparatively restricted context of super-
vised learning from distributed datasets, it is possible to evade
the pitfalls of entity matching with Rademacher observa-
tions. Rados have other advantages: they provide a cheap,
easily parallelizable material which somehow “compresses”
examples while allowing accurate learning. Moreover, they
also offer readily available solution for guarantees private ex-
change of data in a distributed setting.
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U. Brefeld, T. Gärtner, T. Scheffer, and S. Wrobel. Efficient
co-regularised least squares regression. In 23 th ICML,
pages 137–144, 2006.

P Christen. Privacy-preserving data linkage and geocoding:
Current approaches and research directions. In ICDMW06,
pages 497–501. IEEE, 2006.

P. Christen. Data Matching Concepts and Techniques for
Record Linkage, Entity Resolution, and Duplicate Detec-
tion. Springer Data-Centric Systems and Applications,
2012.

T. Estrada, R. Armen, and M. Taufer. Automatic selection
of near-native protein-ligand conformations using a hierar-
chical clustering and volunteer computing. In ACM BCB,
pages 204–213, 2010.

D. Garcıa-Garcıa and R. C. Williamson. Degrees of supervi-
sion. In NIPS*24 Workshops, 2011.

L. Getoor and A. Machanavajjhala. Entity resolution: the-
ory, practice & open challenges. Proceedings of the VLDB
Endowment, 5(12):2018–2019, 2012.

A.-E. Hoerl and R.-W. Kennard. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics,
12(1):55–67, 1970.

S. Lafon, Y. Keller, and R. R. Coifman. Data fusion and
multicue data matching by diffusion maps. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
28(11):1784–1797, 2006.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan,
and W. S. Noble. A statistical framework for genomic data
fusion. Bioinformatics, 20(16):2626–2635, 2004.

Q. Liu and A.T. Ihler. Distributed parameter estimation
via pseudo-likelihood. In 29 th ICML, pages 1487–1494,
2012.

Q. Liu and A. T. Ihler. Distributed estimation, information
loss and exponential families. In NIPS*27, pages 1098–
1106, 2014.

H. Markowitz. Portfolio selection. J. of Finance, 6:77–91,
1952.

R. Nock, G. Patrini, and A. Friedman. Rademacher observa-
tions, private data, and boosting. 32 th ICML, pages 948–
956, 2015.

R. Nock. Learning games and Rademacher observations
losses. CoRR, abs/1512.05244, 2015.

G. Patrini, R. Nock, P. Rivera, and T. Caetano. (Almost) no
label no cry. In NIPS*27, pages 190–198, 2014.

G. Patrini, F. Nielsen, R. Nock, and M. Carioni. Loss factor-
ization, weakly supervised learning and label noise robust-
ness. CoRR, abs/1602.02450, 2016.

G. Patrini, R. Nock, S. Hardy, and T. Caetano. Fast learning
from distributed datasets without entity matching. CoRR,
abs/1603.04002, 2016.

N. Quadrianto, A. Smola, T. Caetano, and Q. Le. Estimating
labels from label proportions. JMLR, 10:2349–2374, 2009.

V. Rastogi, N.-N. Dalvi, and M.-N. Garofalakis. Large-
scale collective entity matching. Proc. VLDB Endowment,
4(4):208–218, 2011.

V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularized
approach to semi-supervised learning with multiple views.
In Proceedings of the ICML Workshop on Learning with
Multiple Views, 2005.

R. F. Sproull, W. H. DuMouchel, M. Kearns, B. W. Lampson,
S. Landau, M. E. Leiter, E. R Parker, and P. J. Weinberger.
Bulk collection of signal intelligence: technical options. In
Committee on Responding to Section 5(d) of Presidential
Policy Directive 28: The Feasibility of Software to Pro-
vide Alternatives to Bulk Signals Intelligence Collection.
National Academy Press, 2015.

L. Sweeney. Privacy-enhanced linking. ACM SIGKDD Ex-
plorations Newsletter, 7(2):72–75, 2005.

F.C. Tsui, J. U. Espino, V. M. Dato, P. H. Gesteland, J. Hut-
man, and M. M. Wagner. Technical description of rods:
a real-time public health surveillance system. Journal of
the American Medical Informatics Association, 10(5):399–
408, 2003.

D. Vatsalan, P. Christen, and V. S. Verykios. A taxonomy of
privacy-preserving record linkage techniques. Information
Systems, 38(6):946–969, 2013.

S. E. Whang and H. Garcia-Molina. Joint entity resolution. In
ICDE, 2012 IEEE 28th International Conference on Data
Engineering, pages 294–305. IEEE, 2012.

S.-E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative block-
ing. In Proc. ACM SIGMOD, pages 219–232, 2009.

Y. Yamanishi, J.-P. Vert, and K. Kanehisa. Protein network
inference from multiple genomic data: a supervised ap-
proach. Bioinformatics, 20(suppl 1):i363–i370, 2004.

B. Zhang, T. Estrada, P. Cicotti, P. Balaji, and M. Taufer. Ac-
curate scoring of drug conformations at the extreme scale.
In 15th IEEE/ACM CCGrid, pages 817–822, 2015.


