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We consider a scenario of two data providers, A and B,
each of whom manage a dataset of private information con-
sisting of two different feature sets related to common cus-
tomers/entities. They jointly aim to learn a linear model us-
ing stochastic gradient algorithms like SGD/SAG (Schmidt
et al., 2013). The setting is federated learning (Konecny
et al., 2016), where data is kept locally and a shared model
is learned on top of local computation. Notice that, in con-
trast with the large majority of work on distributed learning,
in our scenario data is split vertically, i.e. by features. We
also assume that only A knows the target variable.

We propose a secure system solving the problem in two
phases: privacy-preserving entity resolution and logistic re-
gression over encrypted data. With the aid of a coordina-
tor, C, we design a three-party protocol that is secure under
the honest-but-curious adversary model. Our system allows
A and Bto learn a classifier collaboratively, without either
exposing their data in the clear or even sharing which en-
tities they have in common.

Privacy-preserving entity resolution =~ When the dataset
is vertically partitioned across multiple organisations the
problem arises of how to identify the corresponding enti-
ties, namely entity resolution (Christen, 2012). Entity reso-
lution is usually done on identifying features such as name,
address, efc. We perform privacy-preserving entity resolu-
tion using anonymous linkage codes, which map entity in-
formation onto a code from which it is impossible to recon-
struct any entity data. We use the cryptographic longterm
key (CLK) (Schnell et al., 2011) anonymous linkage code,
which provides both privacy and error tolerance. The CLKs
are used in a fuzzy comparison function which allows us to
perform an inner join on the two datasets.

Parties A and B create CLKs for each entry in their datasets
and sent them to G, which performs the entity resolution.
The protocol results in two permutations, one for each data
provider, and a mask. The permutations describe how A
and B should rearrange their dataset so as to be consistent
with each other and the mask. The mask specifies whether a
row corresponds to a record available in both datasets, thus
a record which will be used for learning; it also implicitly
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excludes records that are not matched accross A and B. The
mask itself is only sent to data providers in encrypted form
to prevent revealing the common entities. For simplicity,
we omit mention of the permutations and mask in what fol-
lows.

Logistic regression on encrypted data Learning is per-
formed on data encrypted with the Paillier partially homo-
morphic encryption scheme (Paillier, 1999), an asymmetric
scheme which permits both adding encrypted values and
scaling encrypted values by unencrypted ones. These prop-
erties allow us to implement most of the linear algebra nec-
essary for gradient descent optimization on encrypted data.
Only C possesses the private key.

We approximate the logistic loss and its gradient via Taylor
expansion around 0 which results in polynomials that A and
B can evaluate collaboratively and securely by only trans-
mitting intermediate values that are encrypted with the Pail-
lier scheme. Experiments have shown that we can match
the accuracy of exact logistic loss using a merely second-
order Taylor approximation to the loss (hence linear ap-
proximation to the gradient) at the price of rescaling fea-
tures into the interval [—1, 1] and of applying L, /L5 regu-
larization.

Party C orchestrates the optimization algorithm, taking
care of the stochastic learning parameters (regularization,
learning rate, momentum, etc.), triggering gradient compu-
tations by A and B, and using the logistic loss on hold-out
data to determine when to stop training so as to avoid over-
fitting.

We have proven the practicality of our system in commer-
cial deployments. Our system is capable of scaling to mil-
lions of records with hundreds of features.
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