

ICML 2015

Rademacher observations, private data and boosting

Richard Nock, Giorgio Patrini, Arik Friedman

NICTA, ANU & UNSW

NICTA

Australian Government

Queensland Government

Trade & Investment

Overview

- * Definition of Rademacher observations, rados
- * Surrogate minimization with examples = surrogate minimization with rados
- An efficient boosting algorithm to learn from rados + Experiments
- Rados allow to protect information in examples from many standpoints: computational, algebraic, geometric and differential privacy

Learning setting

- * Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$
- * Sampled according to unknown but fixed distribution ${\mathcal D}$
- * Objective: find algorithm A returning classifier $h \in \mathcal{H}$ with small true risk $\mathbb{E}_{\mathcal{D}}[1_{yh(x)\leq 0}]$
- * In practice, focus on a surrogate $\varphi(x) \ge 1_{x \le 0}$ and minimize

 $\mathbb{E}_{\mathcal{S}}[\varphi(yh(x))]$

* Example:

$$\varphi(x) = \log(1 + \exp(-x)) \mod \log(x)$$

 $\mathcal{H} = \text{linear classifiers}$ $h(\boldsymbol{x}) \doteq \boldsymbol{\theta}^{\top} \boldsymbol{x}$

From examples to rados

input

* Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$

- * Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$
- * Compute products $y_i \cdot x_i$

$$y_1 \cdot x_1$$

 $y_2 \cdot x_2$
 \vdots
 $y_m \cdot x_m$

Do all products

- * Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$
- * Compute products $y_i \cdot x_i$

 $egin{array}{c} y_1 \cdot oldsymbol{x}_1 \ y_2 \cdot oldsymbol{x}_2 \ dots \ y_m \cdot oldsymbol{x}_m \end{array}$

Do all products

Repeat...

 $\boldsymbol{\sigma} \in \Sigma_m$

 $\Sigma_m \doteq \{-1,1\}^m$

pick

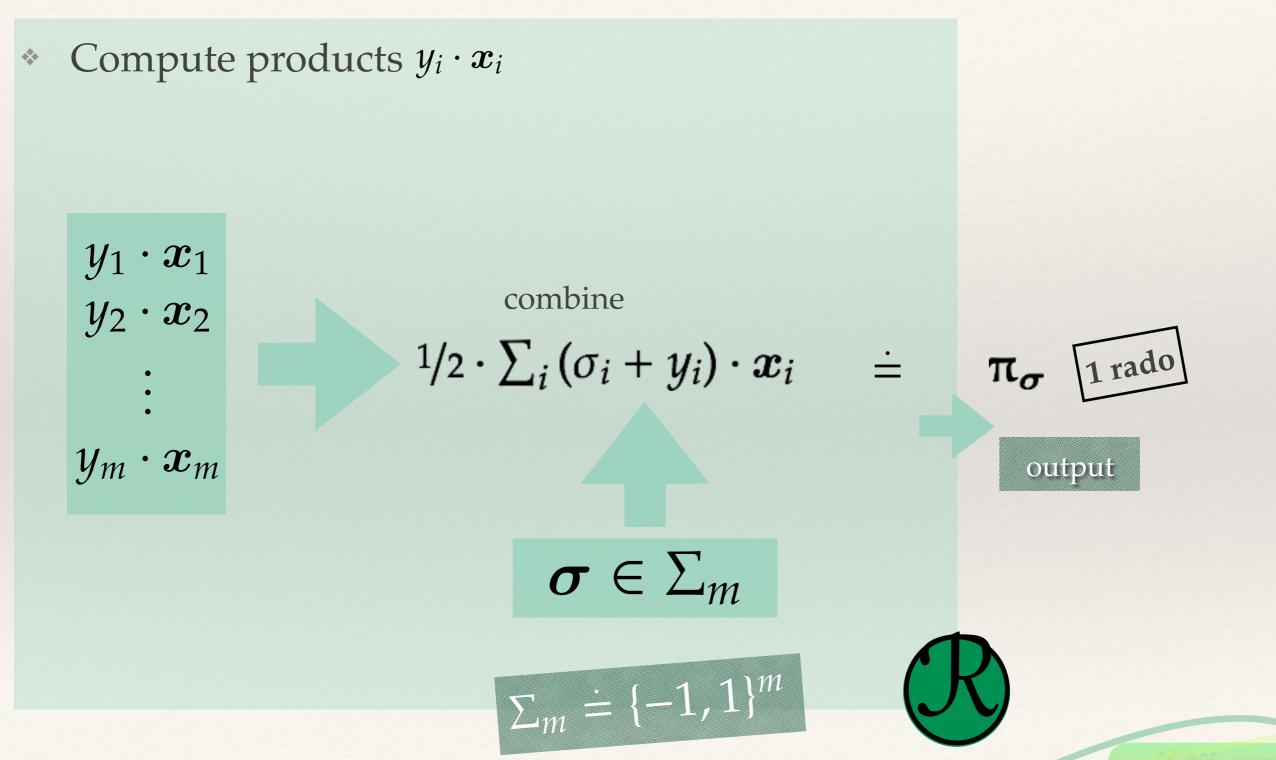
- * Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$
- * Compute products $y_i \cdot x_i$

$$y_1 \cdot x_1$$

 $y_2 \cdot x_2$
 \vdots
 $y_m \cdot x_m$

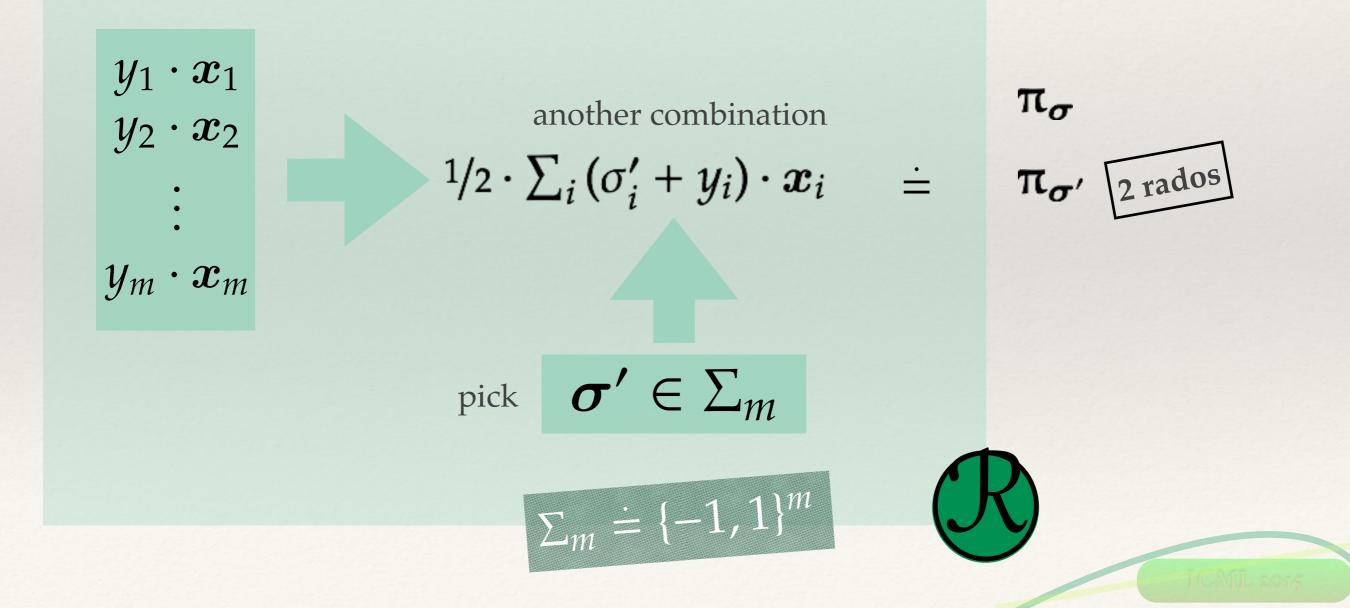
// can be (non) random,
// (non) i.i.d.,
// learned from data,
etc.

* Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$

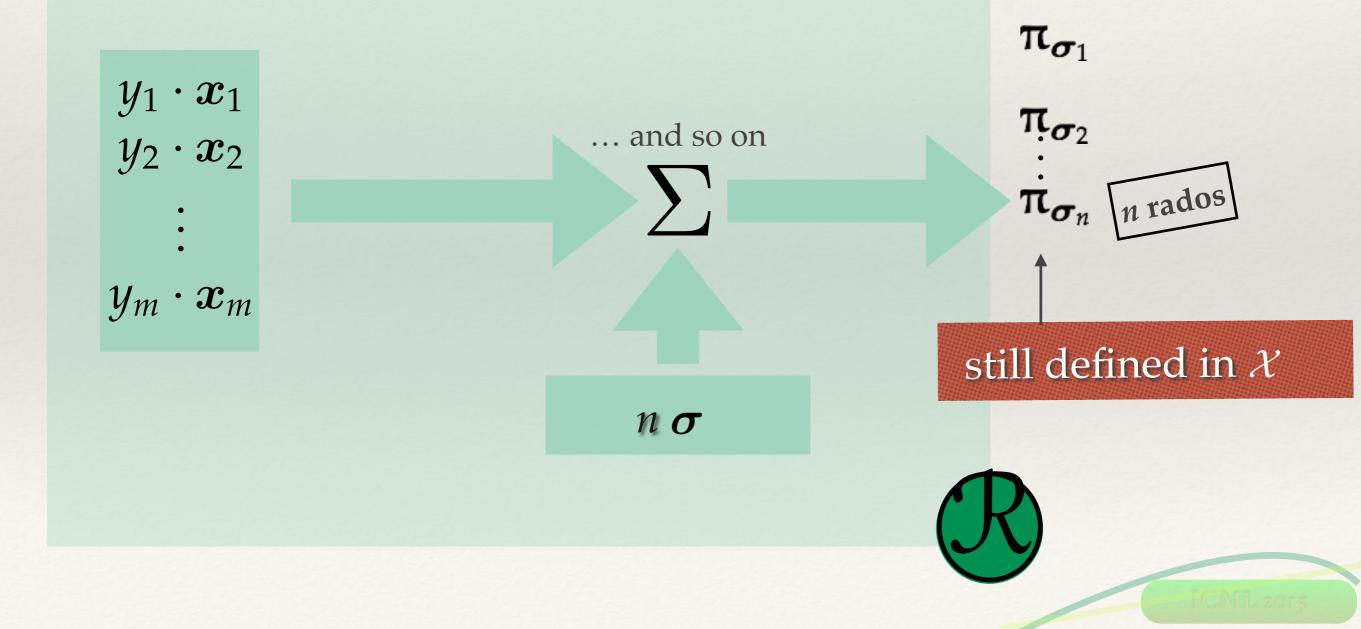


- * Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$
- Compute products $y_i \cdot x_i$ * for each i, either y_i or 0 $\equiv \sum_{i: \sigma_i = y_i} y_i \mathbf{x}_i$ $y_1 \cdot x_1$ combine $y_2 \cdot x_2$ $\frac{1}{2} \cdot \sum_{i} (\sigma_i + y_i) \cdot x_i \doteq$ 1 rado π_{σ} $y_m \cdot x_m$ output $\boldsymbol{\sigma} \in \Sigma_m$ $\Sigma_m \doteq \{-1,1\}^m$

- * Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$
- * Compute products $y_i \cdot x_i$

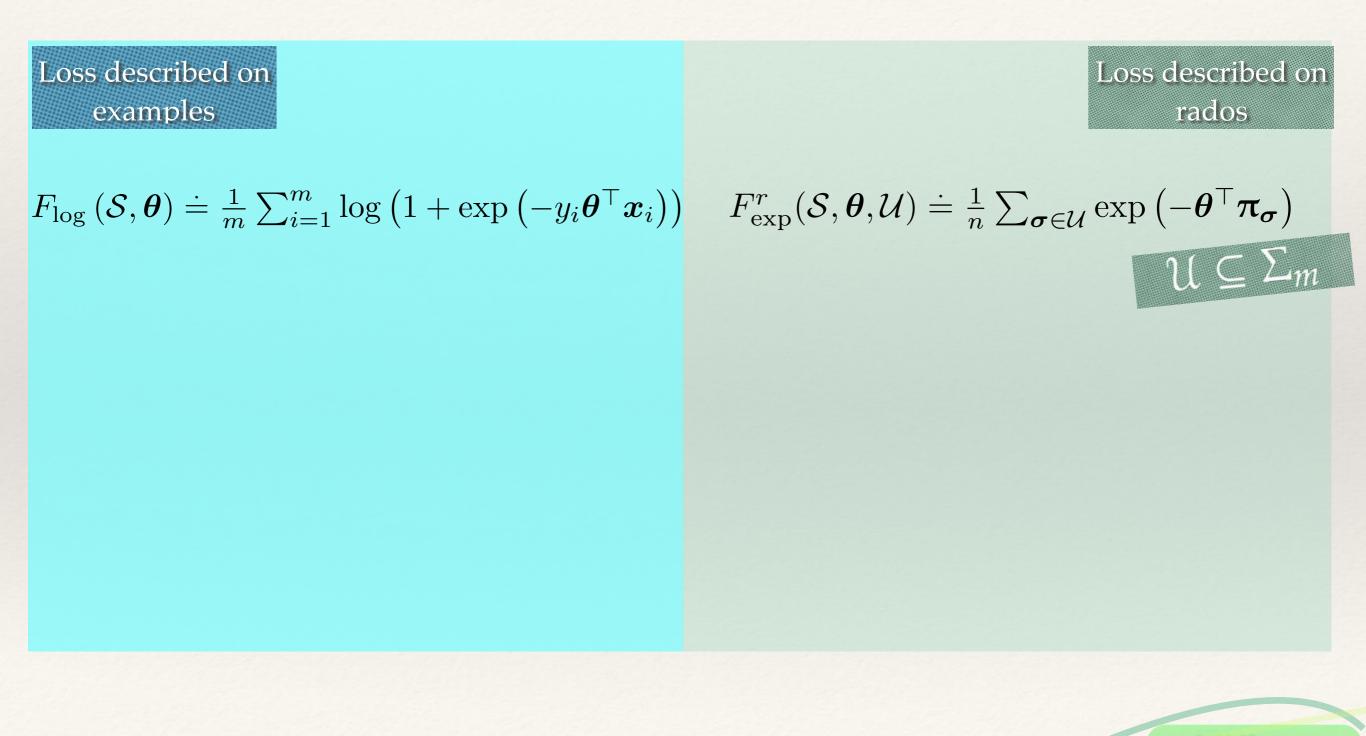


Rademacher observations* Learning sample $\$ \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$ * Compute products $y_i \cdot x_i$



Rado-loss factorization Thm o

* Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$

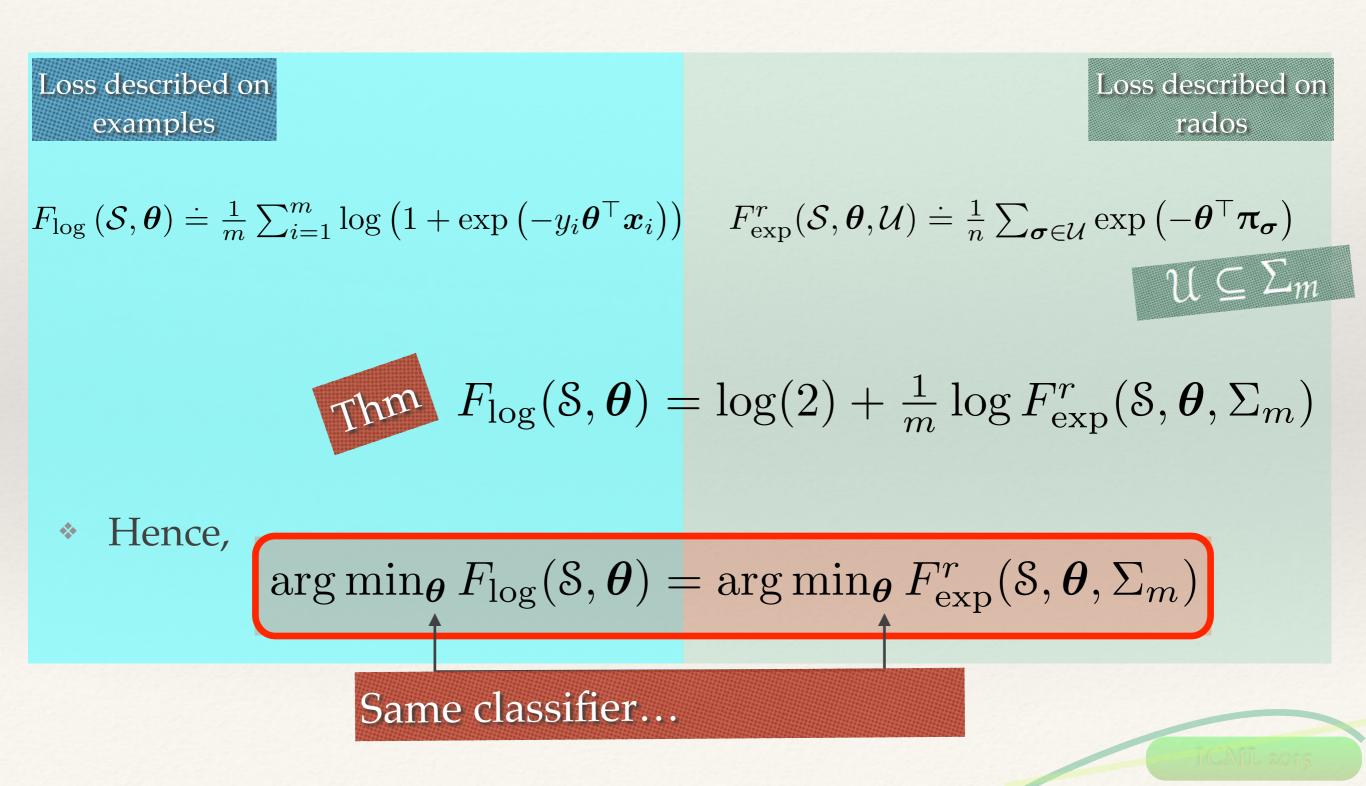


NICTA

Rado-loss factorization Thm

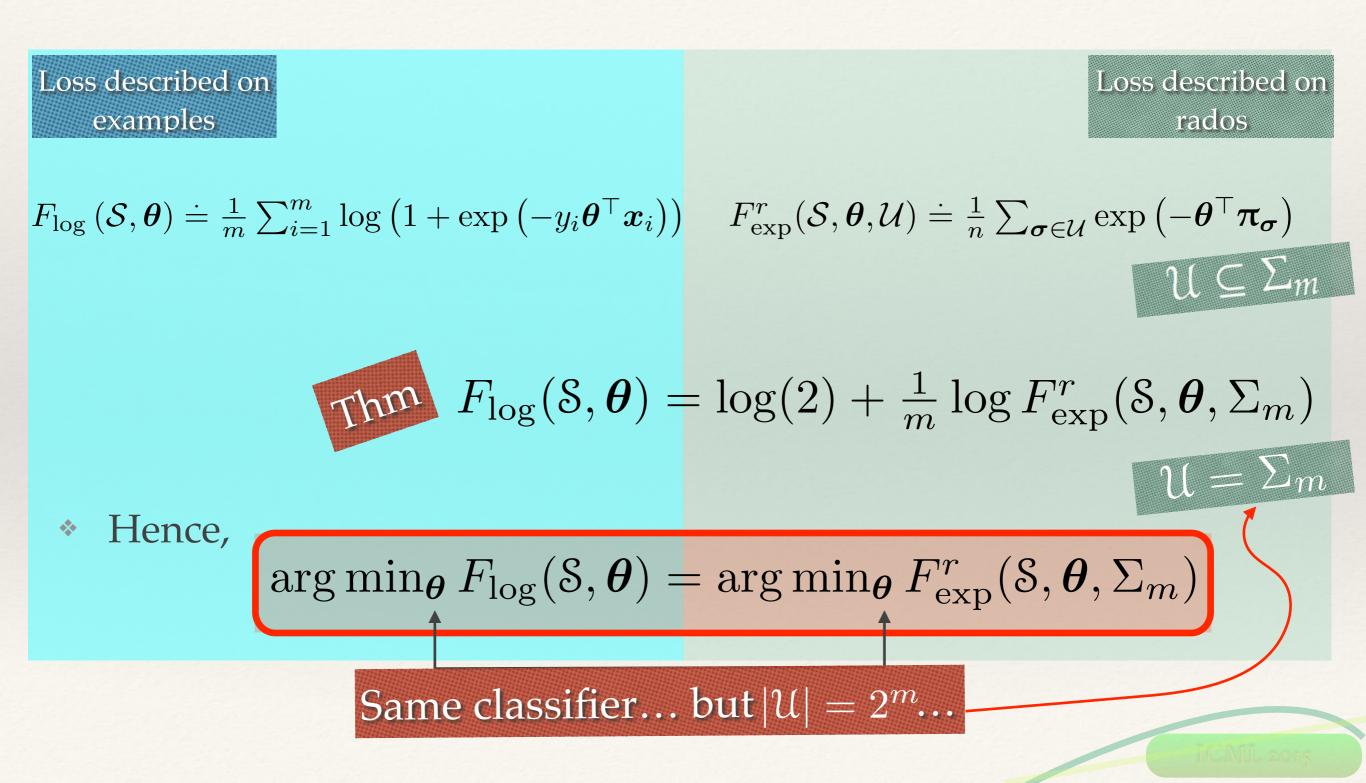
NICTA

* Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$



Bottleneck

* Learning sample $S \doteq \{(x_i, y_i), i = 1, 2, ..., m\}$ $x_i \in \mathbb{R}^d$ $y_i \in \{-1, 1\}$



Workaround

* Let $\mathcal{U} \sim_{i.u.d.} \Sigma_m$ with $|\mathcal{U}| = n$. Then with probability $\geq 1 - \eta$ over the sampling of \mathcal{U} ,

$$F_{\log}(S, \theta) \le \log(2) + \frac{1}{m} \log F_{\exp}^{r}(S, \theta, \mathcal{U}) + O\left(\frac{\varrho}{m^{\beta}} \cdot \sqrt{\frac{r_{\theta}\pi_{r}^{*}}{n}} + \frac{d}{nm} \log \frac{2en}{d\eta}\right)$$

$$(\forall \beta < 1/2)$$

- Holds for any learning sample S,
- * Provided a sufficient number of rados, the minimization of $F_{exp}^{r}(S, \theta, U)$ is a **good proxy** for the minimization of $F_{log}(S, \theta)$

Improved workaround $\forall \Sigma_r \subseteq \Sigma_m$

NICTA

* Let $\mathcal{U} \sim_{i.u.d.} \Sigma_r$ with $|\mathcal{U}| = n$. Then with probability $\geq 1 - \eta$ over the sampling of \mathcal{U} ,

 $F_{\log}(S,\theta) \le \log(2) + \frac{1}{m}\log F_{\exp}^{r}(S,\theta,\mathcal{U}) + O\left(\frac{\varrho}{m^{\beta}} \cdot \sqrt{\frac{r_{\theta}\pi_{r}^{*}}{n}} + \frac{d}{nm}\log\frac{2en}{d\eta}\right) + Q$ $(\forall \beta < 1/2)$

$\frac{\text{Improved workaround}}{\forall \Sigma_r \subseteq \Sigma_m}$

* Let $\mathcal{U} \sim_{i.u.d.} \Sigma_r$ with $|\mathcal{U}| = n$. Then with probability $\geq 1 - \eta$ over the sampling of \mathcal{U} ,

$$F_{\log}(S,\theta) \le \log(2) + \frac{1}{m} \log F_{\exp}^{r}(S,\theta,\mathcal{U}) + O\left(\frac{\varrho}{m^{\beta}} \cdot \sqrt{\frac{r_{\theta}\pi_{r}^{*}}{n}} + \frac{d}{nm} \log \frac{2en}{d\eta}\right) + Q (\forall \beta < 1/2)$$

Authorizes sophisticated design mechanisms for Σ_n , to solve particular problems.

Any efficient learning algorithm with rados $P_{\text{min} F_{\text{exp}}}(s, \theta, u)$

Algorithm 1 Rado boosting (RADOBOOST)

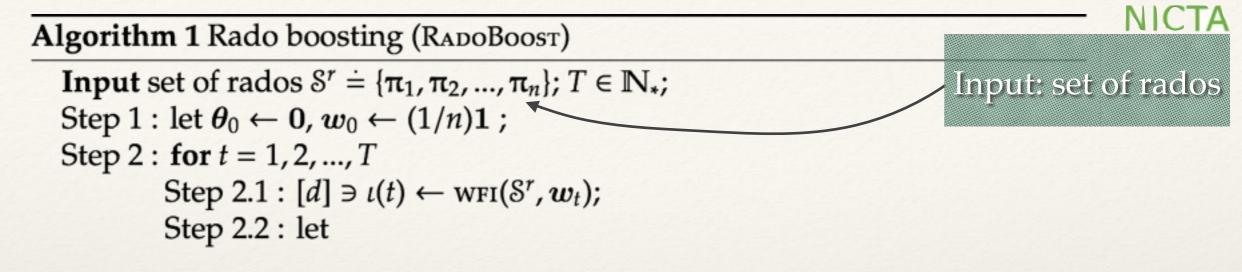
Input set of rados $S^r \doteq {\pi_1, \pi_2, ..., \pi_n}; T \in \mathbb{N}_*;$ Step 1 : let $\theta_0 \leftarrow 0, w_0 \leftarrow (1/n)$ 1 ; Step 2 : for t = 1, 2, ..., TStep 2.1 : $[d] \ni \iota(t) \leftarrow WFI(S^r, w_t);$ Step 2.2 : let

$$r_t \leftarrow \frac{1}{\pi_{*\iota(t)}} \sum_{j=1}^n w_{tj} \pi_{j\iota(t)} ; \qquad (1)$$

$$\alpha_t \leftarrow \frac{1}{2\pi_{*\iota(t)}} \log \frac{1+r_t}{1-r_t} ; \qquad (2)$$

Step 2.3 : **for** *j* = 1, 2, ..., *n*

$$w_{(t+1)j} \leftarrow w_{tj} \cdot \left(\frac{1 - \frac{r_t \pi_{j\iota(t)}}{\pi_{\star\iota(t)}}}{1 - r_t^2}\right) ; \qquad (3)$$



$$r_t \leftarrow \frac{1}{\pi_{*\iota(t)}} \sum_{j=1}^n w_{tj} \pi_{j\iota(t)} ; \qquad (1)$$

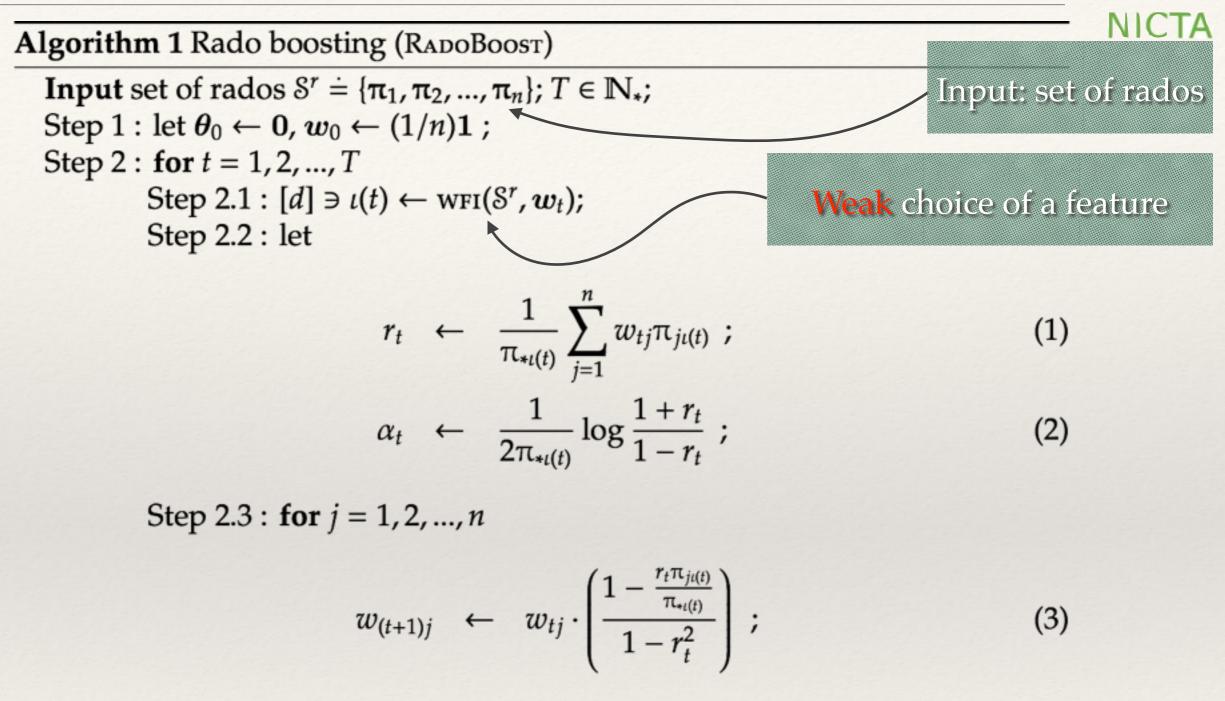
$$\alpha_t \leftarrow \frac{1}{2\pi_{*\iota(t)}} \log \frac{1+r_t}{1-r_t} ; \qquad (2)$$

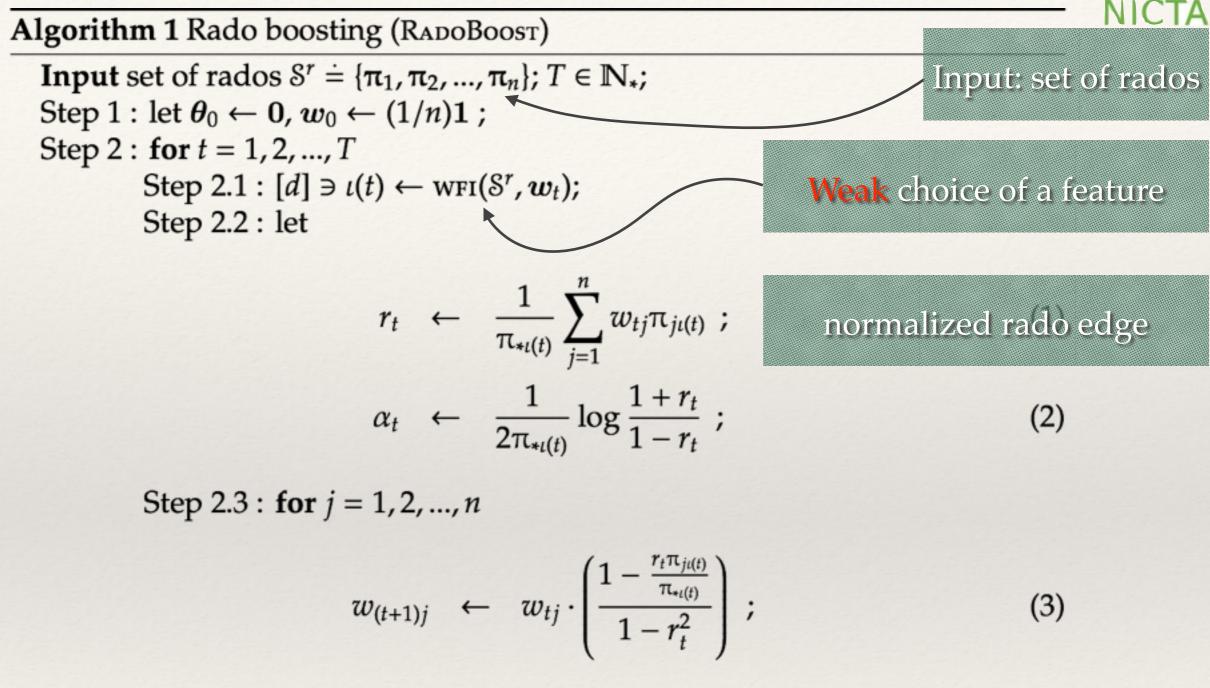
Step 2.3 : **for** *j* = 1, 2, ..., *n*

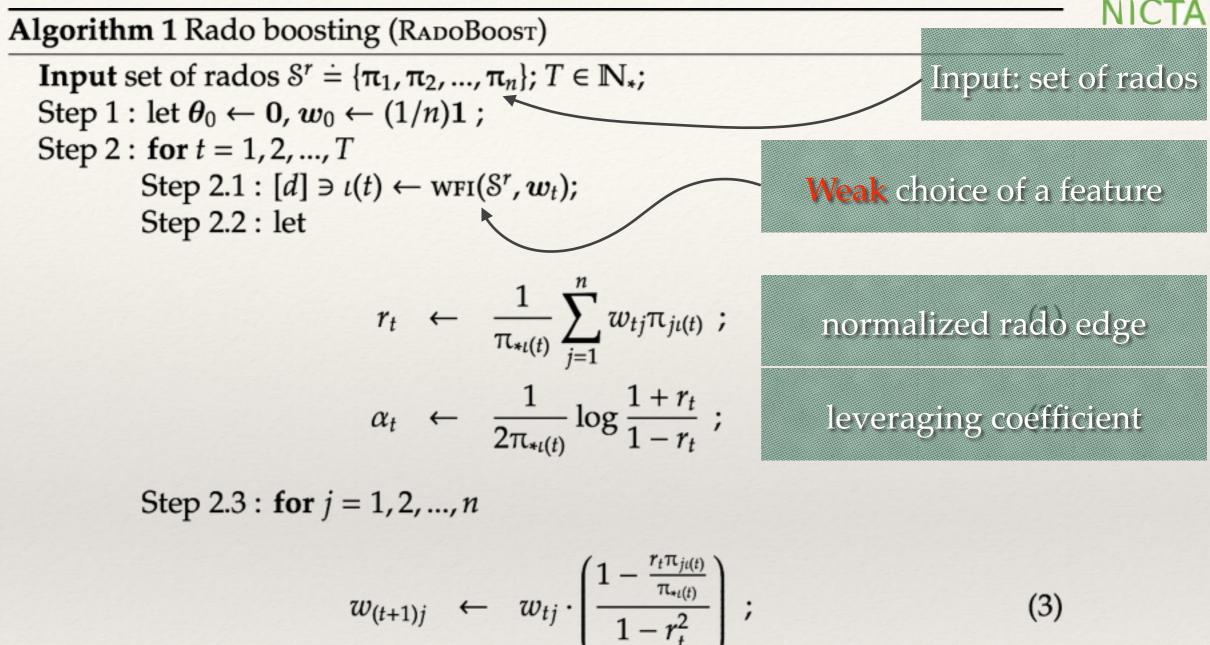
$$w_{(t+1)j} \leftarrow w_{tj} \cdot \left(\frac{1 - \frac{r_t \pi_{j\iota(t)}}{\pi_{\star\iota(t)}}}{1 - r_t^2}\right) ; \qquad (3)$$

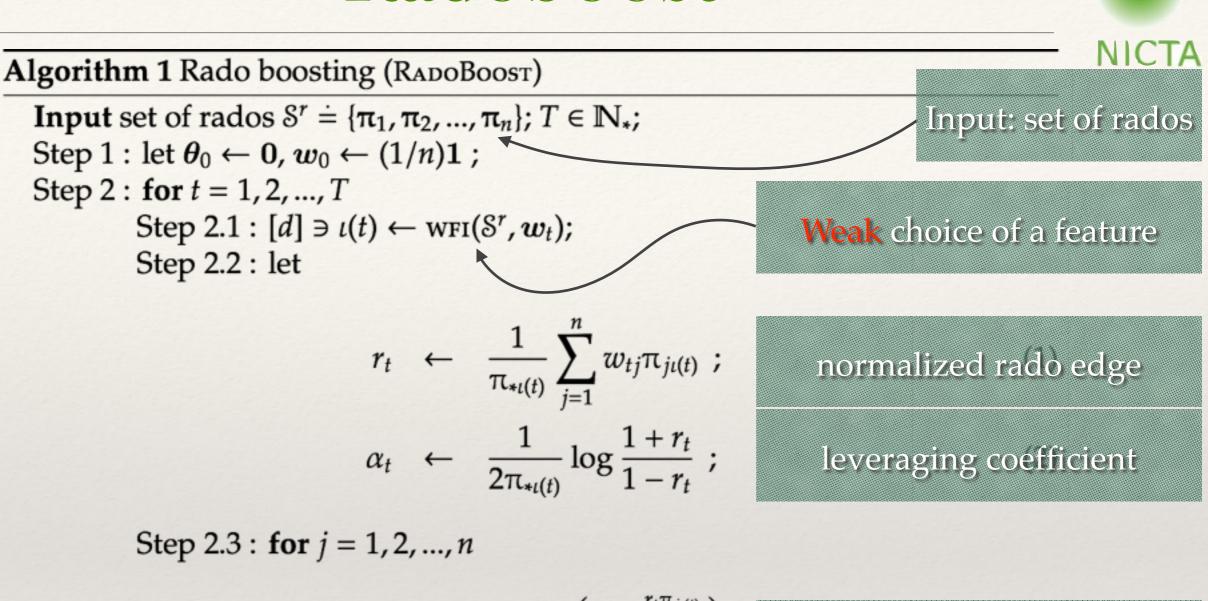
Return θ_T defined by $\theta_{Tk} \doteq \sum_{t:\iota(t)=k} \alpha_t$, $\forall k \in [d]$;

ICMIL 2015



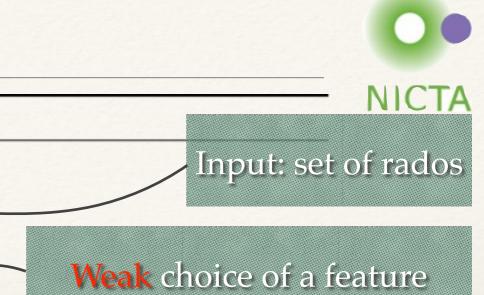






$$w_{(t+1)j} \leftarrow w_{tj} \cdot \left(\frac{1 - \frac{r_t n_{jl(t)}}{n_{*l(t)}}}{1 - r_t^2}\right) ;$$

No renormalization step



Step 2.1 :
$$[d] \ni \iota(t) \leftarrow wFI(S^r, w_t);$$

Step 2.2 : let
 $r_t \leftarrow \frac{1}{\pi_{*\iota(t)}} \sum_{j=1}^n w_{tj} \pi_{j\iota(t)};$
 $\alpha_t \leftarrow \frac{1}{2\pi_{*\iota(t)}} \log \frac{1+r_t}{1-r_t};$
Weak choice of a feature
normalized rado edge
leveraging coefficient

Step 2.3 : **for** *j* = 1, 2, ..., *n*

Algorithm 1 Rado boosting (RADOBOOST)

Step 1 : let $\theta_0 \leftarrow 0$, $w_0 \leftarrow (1/n)$ 1 ;

Step 2 : **for** *t* = 1, 2, ..., *T*

Step 2.2 : let

Input set of rados $S^r \doteq {\pi_1, \pi_2, ..., \pi_n}$; $T \in \mathbb{N}_*$;

$$w_{(t+1)j} \leftarrow w_{tj} \cdot \left(\frac{1 - \frac{r_t \pi_{j\iota(t)}}{\pi_{\star\iota(t)}}}{1 - r_t^2}\right);$$

No renormalization step

Return θ_T defined by $\theta_{Tk} \doteq \sum_{t:\iota(t)=k} \alpha_t$, $\forall k \in [d]$;

Final classifier can be used **directly** on new observations

Radoboost... boosts !

- * Weak learning assumption (WLA): $\exists \gamma > 0$ such that $|r_t| \ge \gamma, \forall t$
- * Then after T rounds of boosting, the output θ_T of **RADOBOOST** meets:

$$F_{\exp}^{r}(S, \theta_{T}, U) \leq \exp(-T\gamma^{2}/2)$$

Thm

Radoboost... boosts !

* Then after *T* rounds of boosting, the output θ_T of **RADOBOOST** meets:

$$F_{\exp}^{r}(\mathcal{S}, \boldsymbol{\theta}_{T}, \mathcal{U}) \leq \exp\left(-T\gamma^{2}/2\right)$$

* So, since
$$F_{\log}(S, \theta_T) = \log(2) + \frac{1}{m} \log F_{\exp}^r(S, \theta_T, \Sigma_m)$$
,

we have

Thm

$$F_{\log}(\mathcal{S}, \boldsymbol{\theta}_T) \leq \log(2) - \frac{T\gamma^2}{2m}$$
 If $\mathcal{U} = \Sigma_m \dots$

NICTA

Radoboost... boosts !

- * Weak learning assumption (WLA): $\exists \gamma > 0$ such that $|r_t| \ge \gamma, \forall t$
- * Then after *T* rounds of boosting, the output θ_T of **RADOBOOST** meets:

$$F_{\exp}^{r}(\mathcal{S}, \boldsymbol{\theta}_{T}, \mathcal{U}) \leq \exp\left(-T\gamma^{2}/2\right)$$

* So, since
$$F_{\log}(S, \theta_T) = \log(2) + \frac{1}{m} \log F_{\exp}^r(S, \theta_T, \Sigma_m)$$
,

we have

Thm

$$F_{\log}(\mathfrak{S}, \boldsymbol{\theta}_T) \leq \log(2) - \frac{T\gamma^2}{2m}$$
 If $\mathcal{U} = \Sigma_m \dots$

NICTA

* ... in the general case ($\forall \mathcal{U}$),

$$F_{\log}(S, \theta_T) \leq \log(2) - \frac{T\gamma^2}{2m} + Q'$$
 not a function of T

Experiments

Experiments (some)

-10000000

 10^{-}

VS

(T = 1000) * RadoBoost vs AdaBoost

number of rados / examples $n = \min\{1000, \operatorname{train} \operatorname{fold} \operatorname{size}/2\}$

 $9 \cdot 10^{-5}$

			AdaBoost	AdaBoost(n)		RadoBoost	
Domain	m	d	$\operatorname{err} \pm \sigma$	$\operatorname{err} \pm \sigma$	$\frac{n}{m}$	$\operatorname{err} \pm \sigma$	$\frac{n}{2^m}$
Abalone	4 177	8	22.96 ± 1.44	23.20 ± 1.44	0.24	25.14 ± 1.83	[3:-[1:3]]
Wine-white	4 898	11	30.93 ± 3.42	30.44 ± 3.25	0.20	32.48 ± 3.55	[3:-[1:3]]
Magic	19 020	10	21.07 ± 0.98	20.91±0.99	0.05	22.75 ± 1.51	[3:-[5:3]]
EEG	14 980	14	46.04 ± 1.38	44.36 ± 1.99	0.07	44.23 ± 1.73	[4:-[4:3]]
Hardware	28 179	95	16.82 ± 0.72	16.76 ± 0.73	0.04	7.61 ± 3.24	[2:-[8:3]]
Twitter	583 250	77	53.75 ± 1.48	53.09 ± 11.23	[1:-3]	6.00 ± 0.77	[1:-[1:5]]
SuSy	5 000 000	17	27.76 ± 0.14	27.43±0.19	[2:-4]	27.26 ± 0.55	[1:-[1:6]]
Higgs	11 000 000	28	42.55 ± 0.19	45.39±0.28	[9:-5]	47.86 ± 0.06	[1:-[1:7]]

Improved workaround $\forall \Sigma_r \subseteq \Sigma_m$

* Let $\mathcal{U} \sim_{i.u.d.} \Sigma_r$ with $|\mathcal{U}| = n$. Then with probability $\geq 1 - \eta$ over Thm he sampling of \mathcal{U} ,

 $F_{\log}(S,\theta) \le \log(2) + \frac{1}{m}\log F_{\exp}^{r}(S,\theta,\mathcal{U}) + O\left(\frac{\varrho}{m^{\beta}} \cdot \sqrt{\frac{r_{\theta}\pi_{r}^{*}}{n}} + \frac{d}{nm}\log\frac{2en}{d\eta}\right) + Q\left(\forall\beta < 1/2\right)$

Authorizes sophisticated design mechanisms for Σ_n to solve particular problems.

Example: privacy

Rados and privacy

- Protection guarantees:
 - * Crafting of **differentially private (DP)** rados from examples
 - Computational hardness of approximate sparse recovery of examples from rados
 - Computational hardness of pinpointing examples used to craft rados
 - Geometric and algebraic hardness of recovering examples from rados
 - Learning with rados from differentially private (noisified) examples.

Rados and privacy

- Protection guarantees:
 - * Crafting of **differentially private (DP)** rados from examples
 - **Computational hardness** of approximate sparse recovery of See paper
 - Computational hardness of pinpointing examples used to craft rados
 - Geometric arSee paperic hardness of recovering examples from rados

Learning with rados from **differentially private** (noisified) examples.

P-rados from non-DP examples ••

* **Definition**: statistical protection of one sensitive feature *f* so that changing one *example* (in **S**) does not change **significantly** the (statistical) distribution of that feature in *rados* (wrt Σ_r):

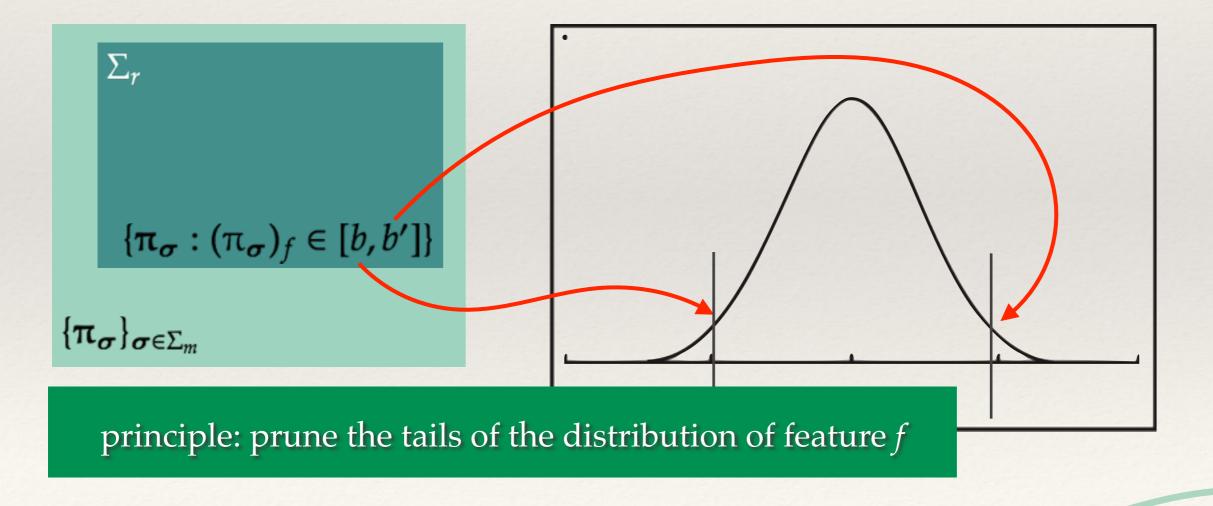
 $\mu(f \text{ in rados}|S) \le \mu(f \text{ in rados}|S') \cdot \exp(\epsilon) + \delta$

NICTA

Prados from non-DP examples

NICTA

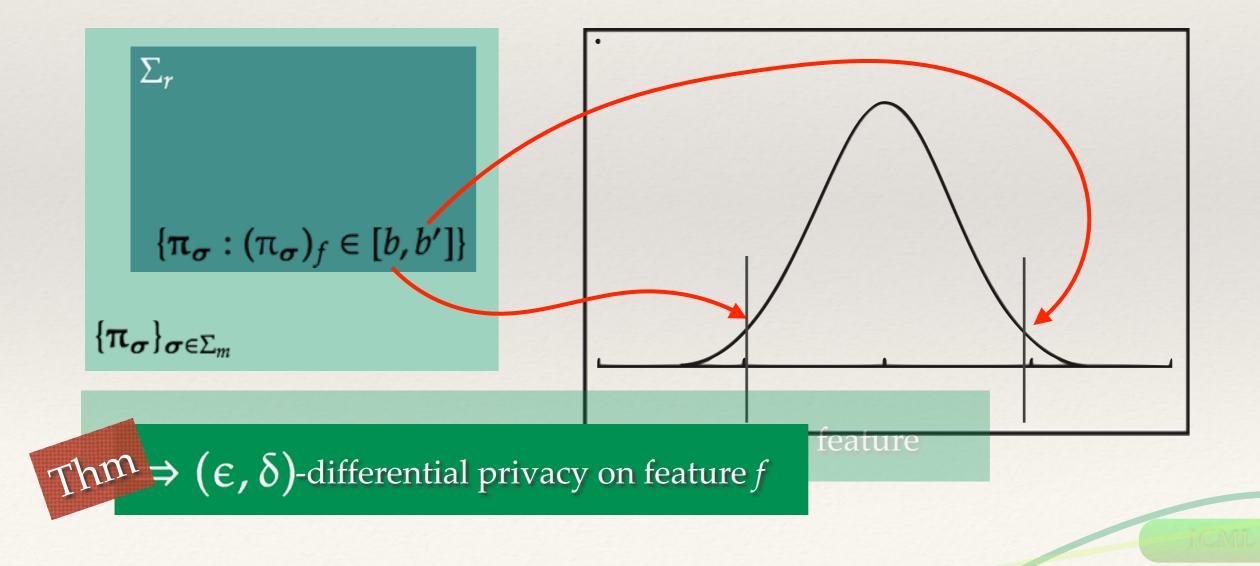
Definition: statistical protection of one sensitive feature *f* so that changing one *example* (in S) does not change significantly the (statistical) distribution of that feature in *rados* (wrt Σ_r):



PDP-rados from non-DP examples

NICTA

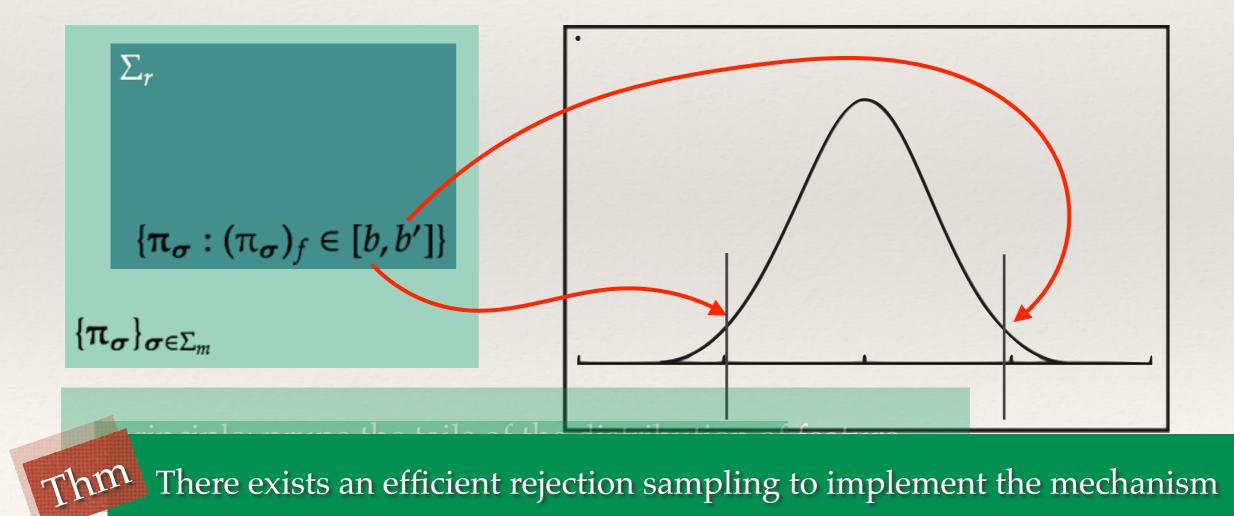
Definition: statistical protection of one sensitive feature *f* so that changing one *example* (in S) does not change significantly the (statistical) distribution of that feature in *rados* (wrt Σ_r):



PDP-rados from non-DP examples

NICTA

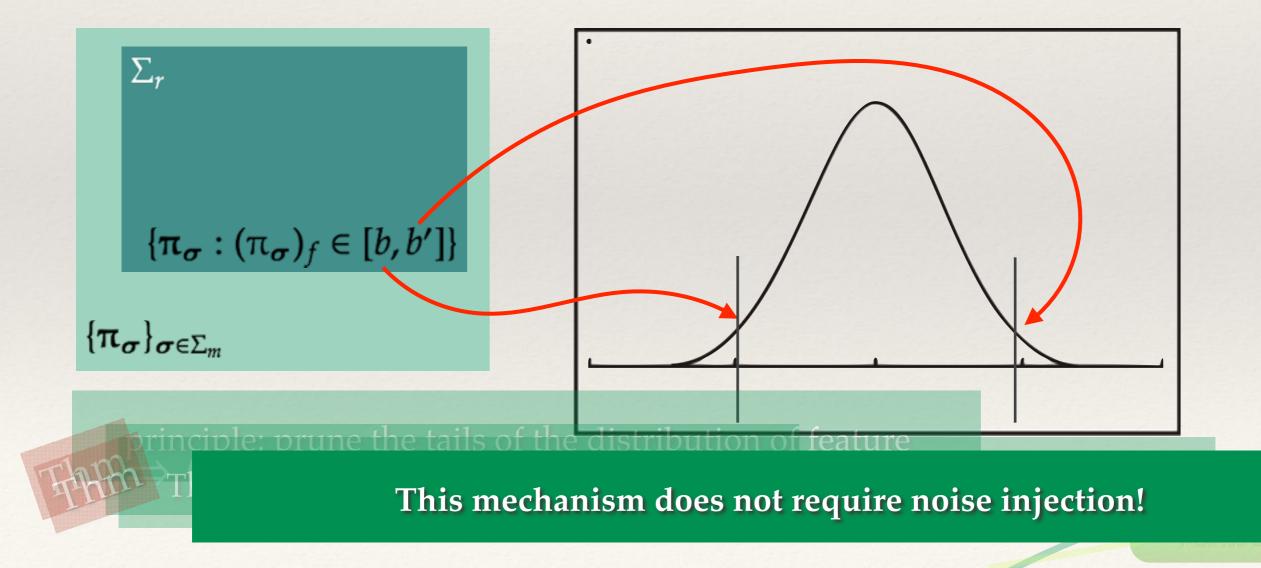
Definition: statistical protection of one sensitive feature *f* so that changing one *example* (in **S**) does not change **significantly** the (statistical) distribution of that feature in *rados* (wrt Σ_r):



PDP-rados from non-DP examples

NICTA

Definition: statistical protection of one sensitive feature *f* so that changing one *example* (in **S**) does not change **significantly** the (statistical) distribution of that feature in *rados* (wrt Σ_r):



Repinpointing examples from rados o

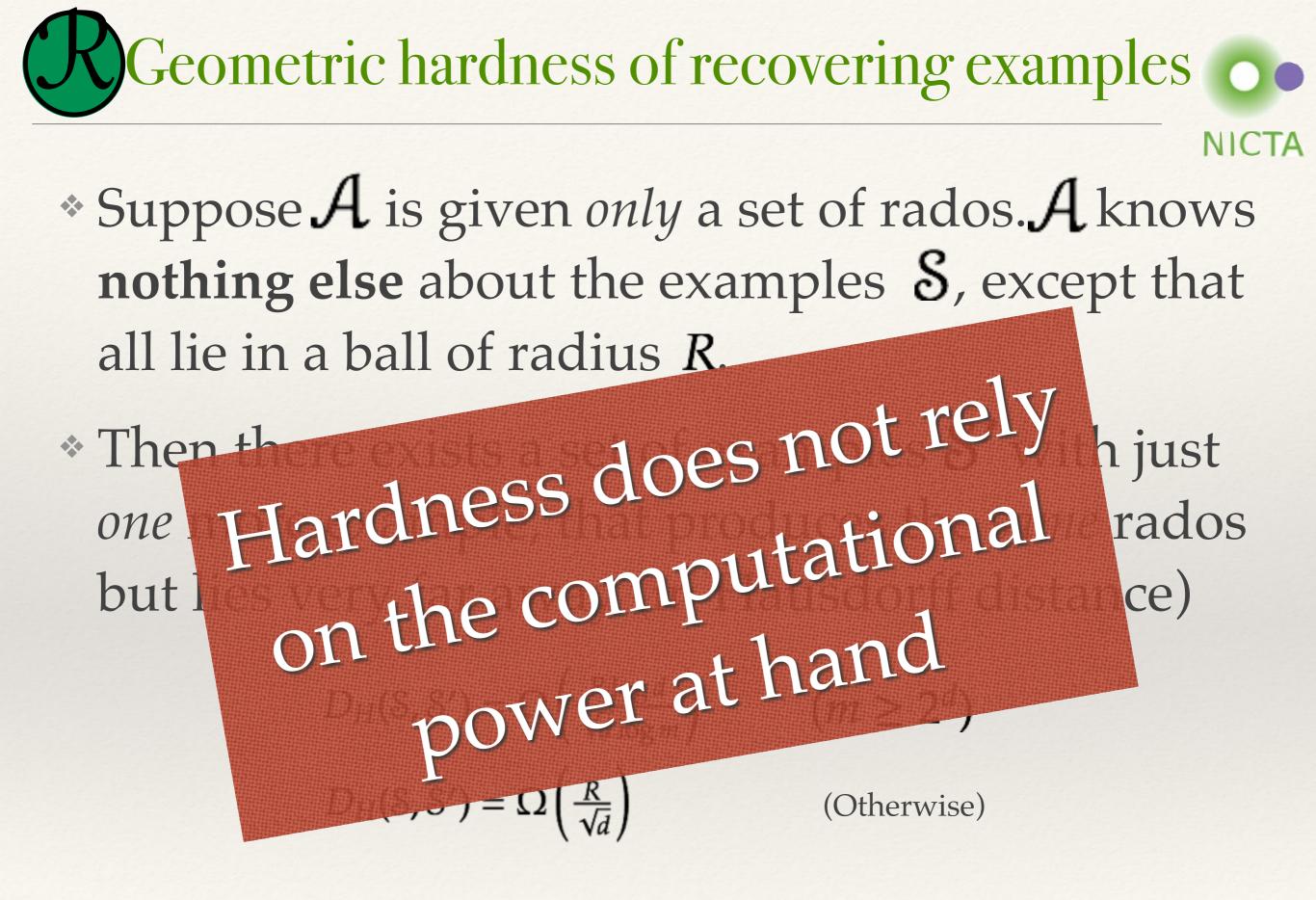
- Problem (informal): a malicious agency A has a big database of people identities S. A intercepts some set of rados S^r sent over the network.
- * Question: does there exist a subset of **S** of size *m* that may have been used to *approximately* craft the rados in **S**^{*r*}?

pinpointing examples from rados o NICTA * Problem (informal): a malicious agency A has a big database of people identities S. Ainto me set of rados k. NP-HARD pset of S * Questi of size been used to approximately craft the rados in S^{r} ?

Reometric hardness of recovering examples o

- * Suppose A is given *only* a set of rados. A knows **nothing else** about the examples S, except that all lie in a ball of radius R.
- * Then there exists a set of examples **S'** with just *one* more example, that produces the *same* rados but lies very far away (in Hausdorff distance)

$$D_{H}(S,S') = \Omega\left(\frac{R \log d}{\sqrt{d} \log m}\right) \qquad (m \ge 2^{d})$$
$$D_{H}(S,S') = \Omega\left(\frac{R}{\sqrt{d}}\right) \qquad (Otherwise)$$



Summary

- * Learning over (small) sets of rados
 - * may be as efficient as learning over examples
 - can ensure additional properties that are hard to meet with examples alone.
- * The final classifier can be used **as is** to classify new observations.
- * So far, we made no optimisation of the rados set for learning, just **plain random selection** — this was sufficient to beat supervised learning algorithms on fairly big domains :-)
- * **Other domains** may benefit from the rado representation (incl. on-line and distributed learning).

Thank you ! Questions ?

