

Learning from Aggregates

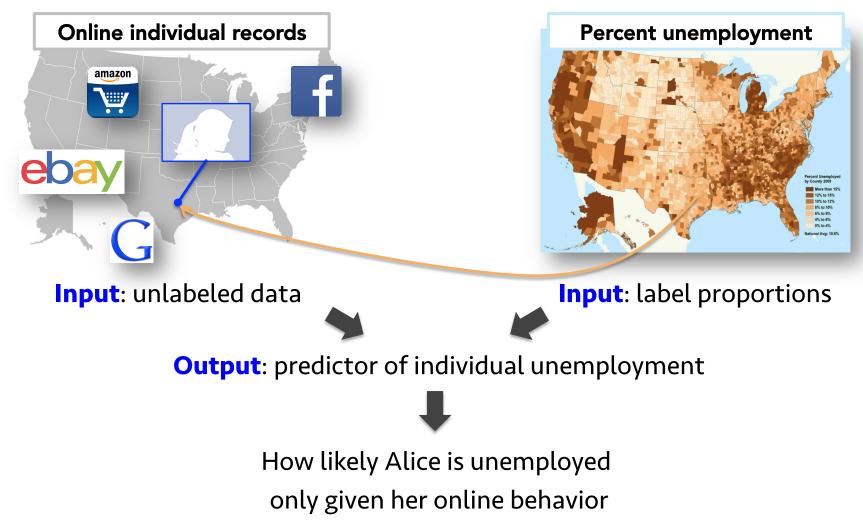
Giorgio Patrini Australian National University, NICTA

Summary

- Learning from label proportions
- Laplacian Mean Map algorithm G.Patrini, R.Nock, P.Rivera, T.Caetano, (Almost) no label no cry, NIPS'14
- Do we need individual feature vectors?

R.Nock, G.Patrini, A.Friedman, Rademacher observations, private data, and boosting, ICML'15

Learning from Label Proportions (LLP)



Learning from Label Proportions (LLP)

Other applications:

- Bags of images/pixels in Computer Vision
- Classify sentences as positive/negative based on overall review score
- Data comes from physical measurements which are technically feasible only in aggregated form
- Potentially, applications already explored by Multiple Instance Learning (MIL)

Learning setting

- Sample $S = \{(\boldsymbol{x}_i, y_i), i \in [m]\}$, on $\mathbb{R}^d \supseteq \mathfrak{X} \times \{-1, +1\}$
- No label is observed
- Known: partition of bags $\cup_j S_j = S, j \in [n]$, and relative label proportions π_j
- (No assumption on how the bags were made)

Goal: learn a binary (linear) classifier m heta for individual feature vectors m x to predict the label as $\ {
m sgn}\ \langle m heta, m x
angle$

Our solution, step 1: factorisation theorem

Def (Altun&Smola COLT'06): the mean operator

$$oldsymbol{\mu} = 1/m \sum_{i=1}^m y_i oldsymbol{x}_i$$

Thm (proper losses factorisation): μ is sufficient for the label variable for most proper losses:

PROPER-LOSS = LOSS w/o LABELS($\boldsymbol{\theta}$) - $\frac{1}{2} \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle$

Our solution, step 1: factorisation theorem

Def (Altun&Smola COLT'06): the mean operator

$$oldsymbol{\mu} = 1/m \sum_{i=1}^m y_i oldsymbol{x}_i$$

Thm (proper losses factorisation): μ is sufficient for the label variable for most proper losses:

PROPER-LOSS = LOSS w/o LABELS
$$(\boldsymbol{\theta}) - rac{1}{2} \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle$$

e.g., classic
logistic loss
$$\begin{array}{l} \operatorname{argmin}_{\boldsymbol{\theta}} \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y\boldsymbol{\theta}^{\top}x_{i}}) = \\ \\ \operatorname{argmin}_{\boldsymbol{\theta}} \frac{1}{m} \sum_{i=1}^{m} \log\sum_{y \in \{-1,1\}} e^{-y\boldsymbol{\theta}^{\top}x_{i}} - \langle \boldsymbol{\theta}, \frac{1}{2m} \sum_{i=1}^{m} y_{i}\boldsymbol{x}_{i} \rangle \end{array}$$

Our solution, step 2: estimate the mean operator

$$\mu = \sum_{j=1}^{n} p(j)\mu_{j} = \sum_{j=1}^{n} p(j) \sum_{y \in \{-1,1\}} yp(y|j)\mathbb{E}_{\mathbb{S}}[x|j,y]$$
$$= \sum_{j=1}^{n} p(j)(\pi_{j}b_{j}^{+} - (1 - \pi_{j})b_{j}^{-})$$
$$b_{j}^{y} = \mathbb{E}_{\mathbb{S}}[x|j,y]$$

Then, come up with a system of equations with \boldsymbol{b}_{j}^{y} as only unknowns:

$$\boldsymbol{b}_j = \mathbb{E}_{\mathbb{S}}[\boldsymbol{x}|j] = \sum_{y \in \{-1,1\}} p(y|j) \mathbb{E}_{\mathbb{S}}[\boldsymbol{x}|j,y] = \sum_{y \in \{-1,1\}} \pi_j \boldsymbol{b}_j^y$$

$$\boldsymbol{b}_j = \mathbb{E}_{\mathbb{S}}[\boldsymbol{x}|j] = \sum_{y \in \{-1,1\}} p(y|j) \mathbb{E}_{\mathbb{S}}[\boldsymbol{x}|j,y] = \sum_{y \in \{-1,1\}} \pi_j \boldsymbol{b}_j^y$$

2 variables for each equation!

Quadrianto et al. JMLR'09

$$\boldsymbol{b}_j = \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|j] = \sum_{y \in \{-1,1\}} p(y|j) \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|j,y] = \sum_{y \in \{-1,1\}} \pi_j \boldsymbol{b}_j^y$$

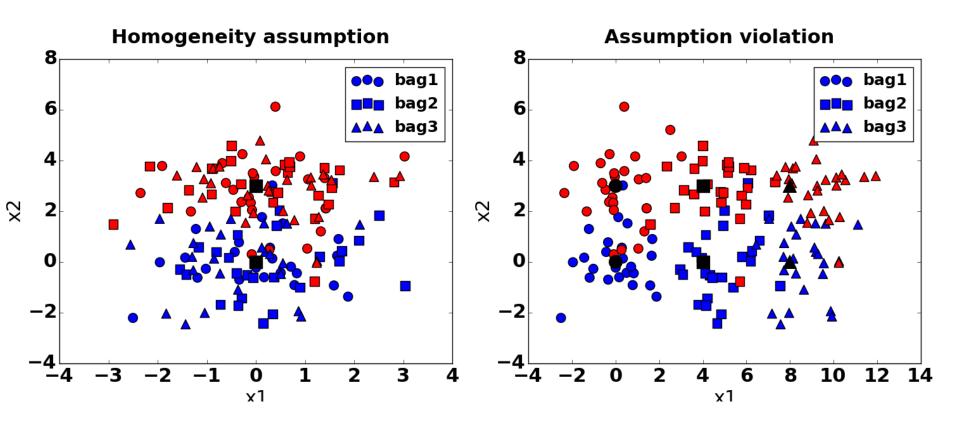
2 variables for each equation!

Solution of *Quadrianto et al. JMRL'09* with *Mean Map*, **homogeneity** assumption:

$$\forall_j \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|j,y] = \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|y]$$

"Unemployed people in all the counties behave online in the same way, in average"

Homogeneity assumption: $\forall_j \mathbb{E}_{S}[\boldsymbol{x}|j, y] = \mathbb{E}_{S}[\boldsymbol{x}|y]$



We relax it

$$\boldsymbol{b}_j = \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|j] = \sum_{y \in \{-1,1\}} p(y|j) \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|j,y] = \sum_{y \in \{-1,1\}} \pi_j \boldsymbol{b}_j^y$$

We only asks **smoothness** on "similar" bags:

$$\forall_{j,j'} \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|j] \approx \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|j'] \implies \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|j,y] \approx \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}|j',y]$$

"The more similar the counties, the more similar the online behaviour of the people unemployed there"

Our solution, step 3: Laplacian regularization

Let $v_{j,j'}$ be the similarity between bags. Then we can encode our assumption in a **regularized least square**:

$$\underset{\boldsymbol{b}_{j}^{y}}{\operatorname{argmin}} \sum_{j} (\boldsymbol{b}_{j} - \sum_{y \in \{-1,1\}} \pi_{j} \boldsymbol{b}_{j}^{y})^{2} + \gamma \sum_{j,j'} v_{j,j'} [(\boldsymbol{b}_{j}^{+} - \boldsymbol{b}_{j'}^{+})^{2} + (\boldsymbol{b}_{j}^{-} - \boldsymbol{b}_{j'}^{-})^{2}]$$

Then, in matrix form:

$$B = [\boldsymbol{b}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_n]^{\top}, B^{\pm} = [\boldsymbol{b}_1^+, \boldsymbol{b}_2^+, ..., \boldsymbol{b}_n^+, \boldsymbol{b}_1^-, \boldsymbol{b}_2^-, ..., \boldsymbol{b}_n^-]^{\top}, \\\Pi = [DIAG(\boldsymbol{\pi}) | DIAG(\boldsymbol{1} - \boldsymbol{\pi})]$$

$$\underset{\mathbf{B}^{\pm}}{\operatorname{argmin}}\operatorname{tr}\left((\mathbf{B}-\mathbf{\Pi}\mathbf{B}^{\pm})^{\top}(\mathbf{B}-\mathbf{\Pi}\mathbf{B}^{\pm})\right)+\gamma\operatorname{tr}\left((\mathbf{B}^{\pm})^{\top}\mathbf{L}\mathbf{B}^{\pm}\right)$$

$$\begin{array}{c} \mathsf{Laplacian} \\ \mathsf{matrix} \text{ on } v_{j,j'} \end{array}$$

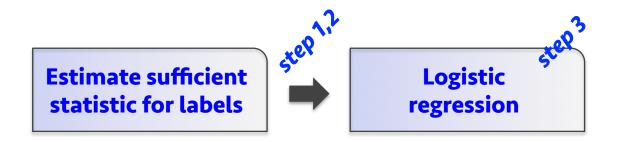
Our solution: Laplacian Mean Map algorithm (steps in reverse order)

Laplacian Mean Map (LMM)

Input
$$S_j, \pi_j, j \in [n]; \lambda, \gamma > 0; V;$$

Step 1 : let $B^{\pm} \leftarrow (\Pi \Pi^T + \gamma L)^{-1} \Pi B$
Step 2 : let $\boldsymbol{\mu} \leftarrow \sum_j p_j (\pi_j \boldsymbol{b}_j^+ - (1 - \pi_j) \boldsymbol{b}_j^-)$
Step 3 : let $\boldsymbol{\theta}_* \leftarrow \arg \min_{\boldsymbol{\theta}} \text{LOSS W/O LABEL}(\boldsymbol{\theta}) + \frac{1}{2} \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle + \lambda \|\boldsymbol{\theta}\|_2^2;$
Return $\boldsymbol{\theta}^*$

Scalability: Step 1 is only $O(n^3) \ll O(m^3)$



Approximation of the mean operator

Theorem 1 Suppose that γ satisfies $\gamma \sqrt{2} \leq \max_{j \neq j'} v_{jj'}$. Let $\mathbf{M} \doteq [\boldsymbol{\mu}_1 | \boldsymbol{\mu}_2 | ... | \boldsymbol{\mu}_n]^\top \in \mathbb{R}^{n \times d}$, $\tilde{\mathbf{M}} \doteq [\tilde{\boldsymbol{\mu}}_1 | \tilde{\boldsymbol{\mu}}_2 | ... | \tilde{\boldsymbol{\mu}}_n]^\top \in \mathbb{R}^{n \times d}$ and $\psi(\mathbf{V}, \mathbf{B}^{\pm}) \doteq (\max_{j \neq j'} v_{jj'})^2 \|\mathbf{B}^{\pm}\|_F$. The following holds:

$$\|\mathbf{M} - \tilde{\mathbf{M}}\|_F \leq \sqrt{n/2} \times \psi(\mathbf{V}, \mathbf{B}^{\pm})$$
.

(Assuming homogeneity with Mean Map, the norm is unbounded.)

Choose the similarity $v_{jj'}^G \doteq \exp(-\|m{b}_j - m{b}_{j'}\|_2^2)$

Under mild conditions, it holds, w.r.t. the max norm of $b_j^y = \mathbb{E}_{\mathcal{S}}[x|j,y]$:

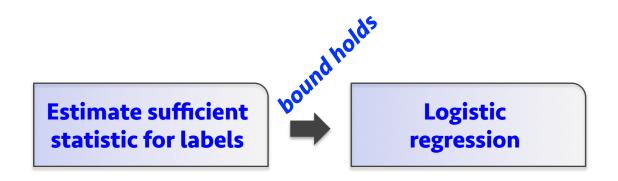
$$\psi(\mathbf{V}^G,\mathbf{B}^{\pm}) = o(1)$$

Approximation of the model

Theorem 1 Let θ_* be the model computed with the true mean operator μ . Let $\tilde{\mu}$, $\tilde{\theta}_*$ be the respective estimates. For any proper loss L_2 -regularizated with parameter $\lambda > 0$, there exists q > 0 such that:

$$\|\tilde{\boldsymbol{\theta}}_* - \boldsymbol{\theta}_*\|_2^2 \leq 1/(2\lambda + q)\|\tilde{\boldsymbol{\mu}} - \boldsymbol{\mu}\|_2^2$$

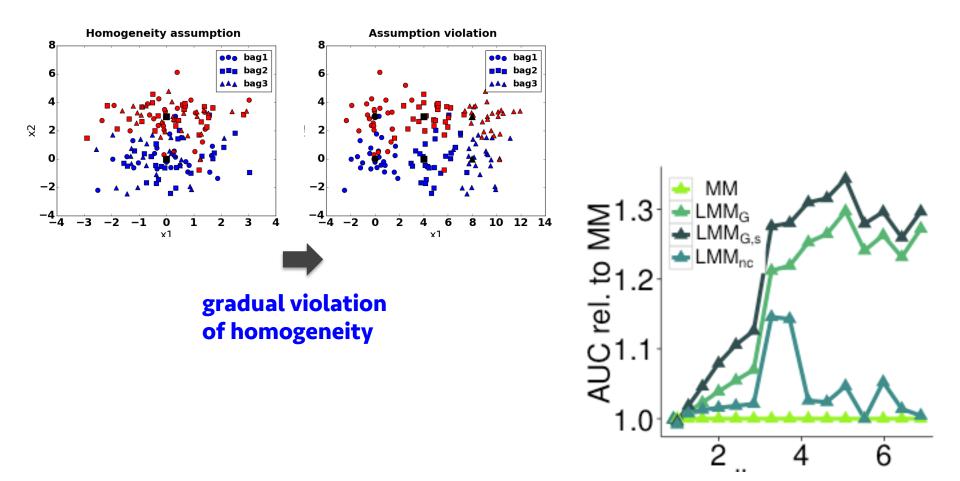
This holds for **any estimator of** μ , even outside the LLP setting



And more in the paper

- Alternating Mean Map: use LMM as initialization and optimizes further, inferring labels as latent variables (similar to Expectation Maximization)
- We also provide generalization bounds based on Rademacher Complexity.

Experiments: homogeneity assumption



Experiments: comparative tests

14 UCI datasets **converted to LLP** (up to ~300K examples)

- Select a categorical feature, use its value to assign bags and proportions; then remove the feature.
- Compare with SVMs (*Yu et al. ICML'13*) and InvCal (*Rueping ICML'10*)

Table 1: 10 small domains results. # win / # lose for row vs column on 50 tests; ties not reported. Bold faces when p-val < .001 for Wilcoxon signed-rank tests.

algorithm		MM	LMM			InvCal AMM ^{min}					conv-
			G	$^{ m G,s}$	nc		ММ	G	$^{ m G,s}$	10ran	$\propto SVM$
	G	36 /4									
MM	G,s	38 /3	30/6								
н	nc	28 /12	3/ 37	2/37							
	InvCal	4/46	3/47	4/46	4/46						
in	MM	33 /16	26/24	25/25	32/18	46/4					
AMM	G	38 /11	35/14	30/20	37/13	47/3	31/7				
ЧW	G,s	35 /14	33/17	30/20	35/15	47/3	24/11	7/15			
Al	10ran	27/22	24/26	22/28	26/24	44/6	20/ 30	16/34	19/31		
M	$conv$ - \propto	21/29	2/48	2/48	2/48	2/48	4/46	3/47	3/47	4/46	
ΛS	alter- \propto	0/50	0/ 50	0/ 50	0/ 50	20/ 30	0/50	0/ 50	0/ 50	3/ 47	27/23

Experiments: no label no cry

algorithm	adult: 48842×89			\mid marke	ting: 452	11 imes 41	census: 299285×381			
	IV(5)	V(16)	VI(42)	V(4)	VII(4)	VIII(12)	IV(5)	VIII(9)	VI(42)	
MM	80.93	76.65	74.01	54.64	50.71	49.70	75.21	90.37	75.52	
$\mathrm{LMM}_{\mathbf{G}}$	81.79	78.40	78.78	54.66	51.00	51.93	75.80	71.75	76.31	
$\mathrm{LMM}_{\mathrm{G,s}}$	84.89	78.94	80.12	49.27	51.00	65.81	84.88	60.71	69.74	
AMM _{MM}	83.73	77.39	80.67	52.85	75.27	58.19	89.68	84.91	68.36	
AMMG AMMG,s AMM1	83.41	82.55	81.96	51.61	75.16	57.52	87.61	88.28	76.99	
Ξ AMM _{G,s}	81.18	78.53	81.96	52.03	75.16	53.98	89.93	83.54	52.13	
$\stackrel{>}{\leq}$ AMM ₁	81.32	75.80	80.05	65.13	64.96	66.62	89.09	88.94	56.72	
AMM _{MM}	82.57	71.63	81.39	48.46	51.34	56.90	50.75	66.76	58.67	
$\hat{\mathbf{g}}$ AMM _G	82.75	72.16	81.39	50.58	47.27	34.29	48.32	67.54	77.46	
AMMG AMMG,s AMM1	82.69	70.95	81.39	66.88	47.27	34.29	80.33	74.45	52.70	
$\begin{bmatrix} \mathbb{Z} \\ \mathbb{Z} \end{bmatrix}$ AMM ₁	75.22	67.52	77.67	66.70	61.16	71.94	57.97	81.07	53.42	
Oracle	90.55	90.55	90.50	79.52	75.55	79.43	94.31	94.37	94.45	

Experiments: no label no cry

algorithm	adult:	1.0			census: 299285 × 381				
	IV(5)		•• •		IV(5)	VIII(9)	VI(42)		
MM	80.93				75.21	90.37	75.52		
$\mathrm{LMM}_{\mathbf{G}}$	81.79	0.8-			75.80	71.75	76.31		
$\mathrm{LMM}_{\mathrm{G},\mathrm{s}}$	84.89		• •		84.88	60.71	69.74		
AMM _{MM}	83.73	~			89.68	84.91	68.36		
AMMG AMMG,s AMMG,s AMM1	83.41	P0.6		• •	87.61	88.28	76.99		
Ξ AMM _{G,s}	81.18	₹"			89.93	83.54	52.13		
${\bf AMM}_1$	81.32				89.09	88.94	56.72		
\star AMM _{MM}	82.57	0.4	Oracle		50.75	66.76	58.67		
AMM _G AMM _{G,s} AMM ₁	82.75		AMM _G	· · · · · · · · · · · · · · · · · · ·	48.32	67.54	77.46		
AMM _{G,s}	82.69		Bigger	Small	80.33	74.45	52.70		
${\bf AMM}_1$	75.22	0.2	domains	domains	57.97	81.07	53.42		
Oracle	90.55)^-5 10^-	· · · · · · · · · · · · · · · · · · ·	94.31	94.37	94.45		
more supervised #bags/#instances									

Take-home messages (until here)

- (Almost) no label no cry: few proportions can • suffice to learn. Privacy threat?
- Sufficiency of mean operator: any "weaklysupervised" learner can exploit the same trick, e.g. semi-supervised, MIL, noisy labels. Bound for the classifier holds.
- **Do not reinvent the wheel**: *reduction* between **ML** problems reduction

But what about individual *feature vectors*?

- Is there an analogue of the mean operator that allows us to learn with *aggregate feature vectors*?
- YES. Define a Rademacher observation as a (non-normalized) mean operator restricted to a subsample $s \in S$:

$$\boldsymbol{\mu}_s = \sum_{i:(\boldsymbol{x}_i, y_i) \in s} y_i \boldsymbol{x}_i$$

Rademacher observations and logistic loss

$$\operatorname{argmin}_{\boldsymbol{\theta}} \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y\boldsymbol{\theta}^{\top}x_{i}}) =$$
$$\operatorname{argmin}_{\boldsymbol{\theta}} \log(2) + \frac{1}{m} \log\left(\frac{1}{2^{m}} \sum_{s \subseteq \mathcal{S}} e^{-\boldsymbol{\theta}^{\top}\boldsymbol{\mu}_{s}}\right) \bigstar \operatorname{they are all}_{aggregated here}$$

The number of μ_s is exponential in m, but we can still learn on a small subset of Rademacher observations. See our *ICML'15* for details.

Yes, but why?

- When we have all the data but do not want to share it entirely with the learner, but still want to learn good models. Privacy constraints.
 - Can prove differential privacy
 - Properties of non-reconstruct-ability of the original data (NP-harness and algebraic impossibility)

Conclusion

Learning from aggregate data is possible, with unexpected applications on

- weakly-supervised learning
- privacy
- distributed learning one μ_s per cluster?
- and social sciences, *e.g.* the ecological inference
- NIPS'15 workshop on "Learning and privacy with incomplete data and weak supervision"