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Summary 

•  Learning from label proportions 
•  Laplacian Mean Map algorithm 
    G.Patrini, R.Nock, P.Rivera, T.Caetano, (Almost) no label no cry, NIPS’14 

•  Do we need individual feature vectors? 
    R.Nock, G.Patrini, A.Friedman, Rademacher observations, private data, 
and boosting, ICML’15 
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Learning from Label Proportions (LLP) 

Output: predictor of individual unemployment 
 
 

How likely Alice is unemployed  
only given her online behavior 

 
 

Percent unemploymentOnline individual records

Input: unlabeled data Input: label proportions 
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Learning from Label Proportions (LLP) 

Other applications: 
•  Bags of images/pixels in Computer Vision 
•  Classify sentences as positive/negative based on 

overall review score 
•  Data comes from physical measurements which 

are technically feasible only in aggregated form 
•  Potentially, applications already explored by 

Multiple Instance Learning (MIL) 
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Learning setting 

•  Sample                                            , on  
•  No label is observed  
•  Known: partition of bags                                   , and 

relative label proportions  
•  (No assumption on how the bags were made) 

Goal: learn a binary (linear) classifier     for individual 
feature vectors      to predict the label as  

S = {(xi, yi), i 2 [m]} Rd ◆ X⇥ {�1,+1}

[jSj = S, j 2 [n]
⇡j

✓
x sgn h✓,xi



Learning from Aggregates  
Giorgio Patrini 

Our solution, step 1: factorisation theorem 
Def (Altun&Smola COLT’06): the mean operator 
 
 
Thm (proper losses factorisation):      is sufficient for the label 
variable for most proper losses: 
 
 
 
 

µ

µ = 1/m
mX

i=1

yixi

proper-loss = loss w/o labels(✓)� 1
2 h✓,µi
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Our solution, step 1: factorisation theorem 
Def (Altun&Smola COLT’06): the mean operator 
 
 
Thm (proper losses factorisation):      is sufficient for the label 
variable for most proper losses: 
 
 
 
 

µ

e.g., classic 
logistic loss 

µ = 1/m
mX

i=1

yixi

argmin

✓

1

m

mX

i=1

log(1 + e�y✓>
xi
) =

argmin

✓

1

m

mX

i=1

log

X

y2{�1,1}

e�y✓>
xi � h✓, 1

2m

mX

i=1

y
i

x

i

i

proper-loss = loss w/o labels(✓)� 1
2 h✓,µi
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Our solution, step 2: estimate the mean operator 

Then, come up with a system of equations with 
as only unknowns: 

b

y
j = ES[x|j, y]

bj = ES[x|j] =
X

y2{�1,1}

p(y|j)ES[x|j, y] =
X

y2{�1,1}

⇡jb
y
j

byj

µ =
nX

j=1

p(j)µj =
nX

j=1

p(j)
X

y2{�1,1}

yp(y|j)ES[x|j, y]

=
nX

j=1

p(j)(⇡jb
+
j � (1� ⇡j)b

�
j )
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2 variables for each equation! 

 
 

bj = ES[x|j] =
X

y2{�1,1}

p(y|j)ES[x|j, y] =
X

y2{�1,1}

⇡jb
y
j
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Quadrianto et al. JMLR’09 

2 variables for each equation! 
 

Solution of Quadrianto et al. JMRL’09 with Mean Map, 
homogeneity assumption: 
 
 
 “Unemployed people in all the counties behave online 

in the same way, in average” 
 
 

bj = ES[x|j] =
X

y2{�1,1}

p(y|j)ES[x|j, y] =
X

y2{�1,1}

⇡jb
y
j

8j ES[x|j, y] = ES[x|y]
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Homogeneity assumption: 

 
 
 
 

8j ES[x|j, y] = ES[x|y]
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We relax it 

We only asks smoothness on “similar” bags: 
 
 
 

“The more similar the counties, the more similar the 
online behaviour of the people unemployed there” 

bj = ES[x|j] =
X

y2{�1,1}

p(y|j)ES[x|j, y] =
X

y2{�1,1}

⇡jb
y
j

8j,j0 ES[x|j] ⇡ ES[x|j0] =) ES[x|j, y] ⇡ ES[x|j0, y]
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Our solution, step 3: Laplacian regularization 
Let          be the similarity between bags. Then we can encode our 
assumption in a regularized least square: 
 
 
 
Then, in matrix form: 
 
 
 
 

argmin
by
j

X

j

(bj �
X

y2{�1,1}

⇡jb
y
j )

2 + �
X

j,j0

vj,j0 [(b
+
j � b+j0)

2 + (b�j � b�j0)
2]

vj,j0

B = [b1, b2, ..., bn]>, B± = [b+1 , b+2 , ..., b+n , b-1, b
-
2, ..., b

-
n]

>,
⇧ = [Diag(⇡)|Diag(1� ⇡)]

argmin
B±

tr
�
(B� ⇧B±)>(B� ⇧B±)

�
+ �tr

�
(B±)>LB±

�

Laplacian 
matrix on  vj,j0
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Our solution: Laplacian Mean Map algorithm 
(steps in reverse order) 

Scalability: Step 1 is only O(n3) ⌧ O(m3)

Estimate sufficient  
statistic for labels 

Logistic 
regression 

Laplacian Mean Map (lmm)

Input Sj ,⇡j , j 2 [n]; �, � > 0; V;
Step 1 : let B

±  (⇧⇧T + �L)�1⇧B
Step 2 : let µ 

P
j pj(⇡jb

+
j � (1� ⇡j)b

�
j )

Step 3 : let ✓⇤  argmin✓ loss w/o label(✓) + 1
2 h✓,µi+ �k✓k22;

Return ✓⇤
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Approximation of the mean operator 

(Assuming homogeneity with Mean Map, the norm is unbounded.) 
 
Choose the similarity   
 
Under mild conditions, it holds, w.r.t. the max norm of                               : 
  
 

Theorem 1 Suppose that � satisfies �
p
2  maxj 6=j0 vjj0 . Let M

.
= [µ1|µ2|...|µn]

> 2
Rn⇥d

,

˜M
.
= [

˜µ1|˜µ2|...|˜µn]
> 2 Rn⇥d

and  (V,B±
)

.
= (maxj 6=j0 vjj0)2kB±kF .

The following holds:

kM� ˜MkF 
p
n/2⇥  (V,B±

) .

byj = ES[x|j, y]

vGjj0
.
= exp(�kbj � bj0k22)

 (VG
,B±) = o(1)
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Approximation of the model 

This holds for any estimator of      , even outside the LLP setting µ

Estimate sufficient  
statistic for labels 

Logistic 
regression 

Theorem 1 Let ✓⇤ be the model computed with the true mean operator µ. Let

µ̃, ✓̃⇤ be the respective estimates. For any proper loss L2-regularizated with

parameter � > 0, there exists q > 0 such that:

k✓̃⇤ � ✓⇤k22  1/(2�+ q)kµ̃� µk22
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And more in the paper 

•  Alternating Mean Map: use LMM as initialization 
and optimizes further, inferring labels as latent 
variables (similar to Expectation Maximization) 

•  We also provide generalization bounds based on 
Rademacher Complexity. 
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Experiments: homogeneity assumption 

gradual violation 
of homogeneity 
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Experiments: comparative tests 

Table 1: 10 small domains results. #win/#lose for row vs column on 50 tests;

ties not reported. Bold faces when p-val < .001 for Wilcoxon signed-rank tests.

algorithm mm lmm InvCal ammmin

conv-

G G,s nc mm G G,s 10ran /SVM

l
m
m G 36/4

G,s 38/3 30/6

nc 28/12 3/37 2/37
InvCal 4/46 3/47 4/46 4/46
MM 33/16 26/24 25/25 32/18 46/4

G 38/11 35/14 30/20 37/13 47/3 31/7

G,s 35/14 33/17 30/20 35/15 47/3 24/11 7/15

a
m
m
m

i
n

10ran 27/22 24/26 22/28 26/24 44/6 20/30 16/34 19/31

S
V
M

conv-/ 21/29 2/48 2/48 2/48 2/48 4/46 3/47 3/47 4/46
alter-/ 0/50 0/50 0/50 0/50 20/30 0/50 0/50 0/50 3/47 27/23

14 UCI datasets converted to LLP (up to ~300K examples) 
•  Select a categorical feature, use its value to assign bags and proportions; 

then remove the feature. 
•  Compare with SVMs (Yu et al. ICML’13) and InvCal (Rueping ICML’10) 
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Experiments: no label no cry 

algorithm adult : 48842 ⇥ 89 marketing: 45211 ⇥ 41 census: 299285 ⇥ 381
IV(5) V(16) VI(42) V(4) VII(4) VIII(12) IV(5) VIII(9) VI(42)

mm 80.93 76.65 74.01 54.64 50.71 49.70 75.21 90.37 75.52
lmm

G

81.79 78.40 78.78 54.66 51.00 51.93 75.80 71.75 76.31
lmm

G,s

84.89 78.94 80.12 49.27 51.00 65.81 84.88 60.71 69.74

a
m
m
m

i
n

ammmm 83.73 77.39 80.67 52.85 75.27 58.19 89.68 84.91 68.36
amm

G

83.41 82.55 81.96 51.61 75.16 57.52 87.61 88.28 76.99
amm

G,s

81.18 78.53 81.96 52.03 75.16 53.98 89.93 83.54 52.13
amm

1

81.32 75.80 80.05 65.13 64.96 66.62 89.09 88.94 56.72

a
m
m
m

a
x

ammmm 82.57 71.63 81.39 48.46 51.34 56.90 50.75 66.76 58.67
amm

G

82.75 72.16 81.39 50.58 47.27 34.29 48.32 67.54 77.46
amm

G,s

82.69 70.95 81.39 66.88 47.27 34.29 80.33 74.45 52.70
amm

1

75.22 67.52 77.67 66.70 61.16 71.94 57.97 81.07 53.42
Oracle 90.55 90.55 90.50 79.52 75.55 79.43 94.31 94.37 94.45
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Experiments: no label no cry 

algorithm adult : 48842 ⇥ 89 marketing: 45211 ⇥ 41 census: 299285 ⇥ 381
IV(5) V(16) VI(42) V(4) VII(4) VIII(12) IV(5) VIII(9) VI(42)

mm 80.93 76.65 74.01 54.64 50.71 49.70 75.21 90.37 75.52
lmm

G

81.79 78.40 78.78 54.66 51.00 51.93 75.80 71.75 76.31
lmm

G,s

84.89 78.94 80.12 49.27 51.00 65.81 84.88 60.71 69.74

a
m
m
m

i
n

ammmm 83.73 77.39 80.67 52.85 75.27 58.19 89.68 84.91 68.36
amm

G

83.41 82.55 81.96 51.61 75.16 57.52 87.61 88.28 76.99
amm

G,s

81.18 78.53 81.96 52.03 75.16 53.98 89.93 83.54 52.13
amm

1

81.32 75.80 80.05 65.13 64.96 66.62 89.09 88.94 56.72

a
m
m
m

a
x

ammmm 82.57 71.63 81.39 48.46 51.34 56.90 50.75 66.76 58.67
amm

G

82.75 72.16 81.39 50.58 47.27 34.29 48.32 67.54 77.46
amm

G,s

82.69 70.95 81.39 66.88 47.27 34.29 80.33 74.45 52.70
amm

1

75.22 67.52 77.67 66.70 61.16 71.94 57.97 81.07 53.42
Oracle 90.55 90.55 90.50 79.52 75.55 79.43 94.31 94.37 94.45

more supervised 
#bags/#instances  
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Take-home messages (until here) 
•  (Almost) no label no cry: few proportions can 

suffice to learn. Privacy threat? 
•  Sufficiency of mean operator: any “weakly-

supervised” learner can exploit the same trick, e.g. 
semi-supervised, MIL, noisy labels. Bound for the 
classifier holds. 

•  Do not reinvent the wheel: reduction between 
ML problems 

 Estimate sufficient  
statistic for labels 

Logistic 
regression 
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But what about individual feature vectors? 

•  Is there an analogue of the mean operator that 
allows us to learn with aggregate feature vectors? 

•  YES. Define a Rademacher observation as a  
(non-normalized) mean operator restricted to a 
subsample             : 

    

s 2 S

µs =
X

i:(xi,yi)2s

yixi
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Rademacher observations and logistic loss 

they are all 
aggregated here 

The number of       is exponential in     , but we can 
still learn on a small subset of Rademacher 
observations. See our ICML’15 for details. 

µs m

argmin

✓

1

m

mX

i=1

log(1 + e�y✓>
xi
) =

argmin

✓
log(2) +

1

m
log

0

@ 1

2

m

X

s✓S

e�✓>µs

1

A
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Yes, but why? 

•  When we have all the data but do not want to 
share it entirely with the learner, but still want to 
learn good models. Privacy constraints. 

•  Can prove differential privacy 
•  Properties of non-reconstruct-ability of the 

original data (NP-harness and algebraic 
impossibility) 
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Conclusion 

Learning from aggregate data is possible, with 
unexpected applications on 
•  weakly-supervised learning 
•  privacy 
•  distributed  learning - one       per cluster? 
•  and social sciences, e.g. the ecological inference 

 
Ø  NIPS’15 workshop on ”Learning and privacy with 

incomplete data and weak supervision” 

µs


