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● Vertical partition of a dataset: common entities but different features
○ One data provider has the labels
○ E.g. banking and insurance data about common customers; labels are 

fraudulent activity
● Goal: learn a predictive model in the cross-feature space

○ Comparable accuracy as if had all data in one place
○ Scale to real-world applications

Secure end to end system
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● Vertical partition of a dataset: common entities but different features
○ One data provider has the labels
○ E.g. banking and insurance data about common customers; labels are 

fraudulent activity
● Goal: learn a predictive model in the cross-feature space

○ Comparable accuracy as if had all data in one place
○ Scale to real-world applications

● Constraints 
○ Who is who? ⇨ Private entity resolution
○ Raw data remains private ⇨ federated learning + privacy

Secure end to end system
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Overview
● End-to-end system:

○ Security assumptions / requirements
○ Entity resolution
○ Learning on private data

● Deployment & experiments
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Security assumptions / requirements
● Participants are honest-but-curious:

○ they follow the protocol
○ they are not colluding
○ but: they try to infer as much as possible

● Reasonable: participants have an incentive to compute an accurate model.
● Only the Coordinator holds the private key used to decrypt messages.
● No sensitive data (raw or aggregated) leaves a data provider unencrypted

○ ...but computation uses unencrypted individual records locally.
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Privacy-preserving entity resolution
● Goal: match corresponding rows in two distinct databases

● Constraint: can’t share Personally Identifiable Information (PII)
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Privacy-preserving entity resolution
● Goal: match corresponding rows in two distinct databases

● Constraint: can’t share Personally Identifiable Information (PII)
● Solution: fuzzy & private matching 

9



Privacy-preserving entity resolution
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Privacy-preserving entity resolution
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bigrams [Schnell et al. 11]
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Privacy-preserving entity resolution
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encrypted mask: vector of 
encrypted 0/1 to select matches

Privacy-preserving entity resolution: the output
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13 No data provider knows which/how many entities are in common!

permutations: align 
row of A and B
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● End-to-end system:

○ Security assumptions / requirements
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Background: Paillier Partially Homomorphic Encryption

●         is the encryption of 
● Addition: 

● Scalar multiplication: 

● Extend to vectors ⇨ encrypted linear algebra (almost)!
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Background: Paillier Partially Homomorphic Encryption

●         is the encryption of 
● Addition: 

● Scalar multiplication:

● Extend to vectors ⇨ encrypted linear algebra (almost)!
● Our Paillier implementations: 

○ Python github.com/n1analytics/python-paillier
○ Java github.com/n1analytics/javallier
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Logistic regression 
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● Goal: Distributed SGD for logistic regression keeping data private
● Challenges:

○ Constrained by Paillier to simple arithmetics (e.g.: no log, no exp)
○ Data is split by features and cannot leave their data providers



Logistic regression 
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● Goal: Distributed SGD for logistic regression keeping data private
● Challenges:

○ Constrained by Paillier to simple arithmetics (e.g.: no log, no exp)
○ Data is split by features and cannot leave their data providers

● Solutions:
○ Gradient and loss approximation using Taylor expansion, up to 2nd 

order
○ Collaborative protocol for computing gradients and loss values



Taylor approximation*
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● Logistic loss, 

● and its gradient

* similar to [Aono et al. 16] 

Only used for 
stopping criterion



Logistic loss vs. its Taylor approximation

20

For a good approx: scale features into 
a small interval and regularize !



Protocol example: how to compute a square? 
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● The most complex operation in the learning protocol
● … and we cannot do squares on encrypted numbers with Paillier !



Protocol example: how to compute a square?
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C: Coordinator, private key holder

(Entities are matched via 
permutation and mask here)

A: Data provider B: Data provider



Protocol example: how to compute a square?
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C: Coordinator, private key holder

A: Data provider B: Data provider



Protocol example: how to compute a square?
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C: Coordinator, private key holder

A: Data provider B: Data provider



Protocol example: how to compute a square?
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C: Coordinator, private key holder

A: Data provider B: Data provider



Protocol example: how to compute a square?
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C: Coordinator, private key holder

A: Data provider B: Data provider



Protocol example: how to compute a square?
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C: Coordinator, private key holder

A: Data provider B: Data provider

Decrypt:



Protocol example: how to compute a square?
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C: Coordinator, private key holder

A: Data provider B: Data provider

Decrypt: C can take a gradient 
step, with gradient in 
the clear
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Deployment at each party -- 2 data providers & coordinator -- with docker images 
and kubernetes cluster.

AWS instance, R4.4xlarge:

● 16 vCPU 
● 60 GBs of RAM (DDR4)
● Up to 10 Gigabit network

C: Coordinator

BA

Deployment
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Scalability of entity resolution
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time =           
hashing +    
matching + 
permutation

~6h



Scalability of entity resolution

32

time =           
hashing +    
matching + 
permutation

20 machines per node:   
50min instead of 6h



Scalability of learning
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time = 1 learning epoch + evaluation



Scalability of learning
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16 machines per node: 
down to 200 min 

time = 1 learning epoch + evaluation



Summary and future work
● End-to-end solution for entity resolution + logistic regression on vertically 

partitioned data
● Security:

○ Records remain confidential from other parties
○ Knowledge of common entities is not shared

● Scalability:
○ Commercial deployment on up to x1M rows and x100 features

● Work in progress:
○ Further parallelization: cluster + GPUs
○ 3+ data providers
○ Learning bypassing entity resolution [Nock et al. 15, Patrini et al. 16]

35



Thank you!
For more info:

● Website: www.n1analytics.com
● Blog: blog.n1analytics.com
● Twitter: @n1analytics

We are hiring!

● Research Scientist - Machine Learning (Sydney): jobs.csiro.au/s/LDOXTy
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