Privacy-preserving entity resolution and logistic regression on encrypted data

Giorgio Patrini &
Mentari Djamiko, Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Maximilian Ott, Huy Pham, Guillaume Smith, Brian Thorne, Dongyao Wu
N1 Analytics @ Data61 CSIRO
Scenario & motivation

A: Data provider
B: Data provider
C: Coordinator

Sensitive messages are encrypted
Confidentiality boundary
Different features, many shared entities
Secure end to end system

- **Vertical partition** of a dataset: common entities but **different features**
 - One data provider has the *labels*
 - *E.g.* banking and insurance data about common customers; labels are fraudulent activity

- **Goal**: learn a predictive model in the cross-feature space
 - Comparable **accuracy** as if had all data in one place
 - **Scale** to real-world applications
Secure end to end system

- **Vertical partition** of a dataset: common entities but **different features**
 - One data provider has the *labels*
 - *E.g.* banking and insurance data about common customers; labels are fraudulent activity
- **Goal**: learn a predictive model in the cross-feature space
 - Comparable **accuracy** as if had all data in one place
 - **Scale** to real-world applications
- **Constraints**
 - Who is who? ⇒ **Private entity resolution**
 - Raw data remains **private** ⇒ **federated learning + privacy**
Overview

- End-to-end system:
 - Security assumptions / requirements
 - Entity resolution
 - Learning on private data
- Deployment & experiments
Security assumptions / requirements

- Participants are **honest-but-curious**:
 - they follow the protocol
 - they are not colluding
 - **but**: they try to infer as much as possible

- Reasonable: participants have an incentive to compute an accurate model.
- **Only the Coordinator holds the private key** used to decrypt messages.
- No sensitive data (raw or aggregated) *leaves* a data provider unencrypted
 - ...but computation uses unencrypted individual records *locally*.
Overview

● End-to-end system:
 ○ Security assumptions / requirements
 ○ **Entity resolution**
 ○ Learning on private data

● Deployment & experiments
Privacy-preserving entity resolution

● **Goal**: match *corresponding* rows in two distinct databases

| Name | DOB | ...
|---------------|--------------|
| Klara Jovel | 07/09/1942 | ...
| Scott Redo | 04/08/1923 | ...
| Tori Mckone | 07/06/1921 | ...
| Rusty Brod | 25/07/2014 | ...

| Name | DOB | ...
|---------------|--------------|
| Tori Mckone | 07/06/1921 | ...
| Scotty Undo | 24/01/1965 | ...
| Scott Redo | 04/08/1923 | ...
| Clara Jovel | 07/09/1942 | ...

● **Constraint**: can’t share Personally Identifiable Information (PII)
Privacy-preserving entity resolution

- **Goal**: match *corresponding* rows in two distinct databases

<table>
<thead>
<tr>
<th>Name</th>
<th>DOB</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klara Jovel</td>
<td>07/09/1942</td>
<td>...</td>
</tr>
<tr>
<td>Scott Redo</td>
<td>04/08/1923</td>
<td>...</td>
</tr>
<tr>
<td>Tori Mckone</td>
<td>07/06/1921</td>
<td>...</td>
</tr>
<tr>
<td>Rusty Brod</td>
<td>25/07/2014</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>DOB</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tori Mckone</td>
<td>07/06/1921</td>
<td>...</td>
</tr>
<tr>
<td>Scotty Undo</td>
<td>24/01/1965</td>
<td>...</td>
</tr>
<tr>
<td>Scott Redo</td>
<td>04/08/1923</td>
<td>...</td>
</tr>
<tr>
<td>Clara Jovel</td>
<td>07/09/1942</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Constraint**: can’t share Personally Identifiable Information (PII)
- **Solution**: *fuzzy & private* matching
Privacy-preserving entity resolution

C: Coordinator

A: Data provider

B: Data provider

Name, DOB, gender, etc. of A’s customers
Privacy-preserving entity resolution

C: Coordinator

A: Data provider

B: Data provider

Preserves similarity, \textit{e.g.} by hash on bigrams [Schnell et al. 11]

Shared secret salt

Hash

PII

Hash

PII
Privacy-preserving entity resolution

Fuzzy matcher

C: Coordinator

A: Data provider

Hash

PII

B: Data provider

Hash

PII

Robust to misspellings and errors
Privacy-preserving entity resolution: the output

Permutation & encrypted mask

C: Coordinator

permutations: align row of A and B
encrypted mask: vector of encrypted 0/1 to select matches

A: Data provider

B: Data provider

No data provider knows which/how many entities are in common!
Overview

● End-to-end system:
 ○ Security assumptions / requirements
 ○ Entity resolution
 ○ Learning on private data

● Deployment & experiments
Background: Paillier Partially Homomorphic Encryption

- $[[u]]$ is the encryption of u
- **Addition:**

 $[[u]] + [[v]] = [[u + v]]$

- **Scalar multiplication:**

 $n \cdot [[u]] = [[nu]]$

- **Extend to vectors** \Rightarrow **encrypted linear algebra** (almost)!
Background: Paillier Partially Homomorphic Encryption

- $[[u]]$ is the encryption of u
- **Addition:**

 $$[[u]] + [[v]] = [[u + v]]$$

- **Scalar multiplication:**

 $$n \cdot [[u]] = [[nu]]$$

- Extend to vectors \Rightarrow **encrypted linear algebra** (almost)!
- Our Paillier implementations:
 - Python github.com/n1analytics/python-paillier
 - Java github.com/n1analytics/javallier
Logistic regression

- **Goal**: Distributed SGD for logistic regression keeping data private
- **Challenges**:
 - Constrained by **Paillier** to simple arithmetics (e.g.: no log, no exp)
 - Data is split **by features** and cannot leave their data providers
Logistic regression

● **Goal:** Distributed SGD for logistic regression keeping data private
● **Challenges:**
 ○ Constrained by Paillier to simple arithmetics (e.g.: no log, no exp)
 ○ Data is split by features and cannot leave their data providers

● **Solutions:**
 ○ Gradient and loss approximation using Taylor expansion, up to 2nd order
 ○ Collaborative protocol for computing gradients and loss values
Taylor approximation*

- Logistic loss,
 \[
 \ell(\theta) = \log(1 + \exp(-y\theta^\top x)) \\
 \approx \log 2 - \frac{1}{2} y\theta^\top x + \frac{1}{8} (\theta^\top x)^2
 \]

- and its gradient
 \[
 \nabla \ell(\theta) = \left(\frac{1}{1 + e^{-y\theta^\top x}} - 1 \right) yx \\
 \approx \left(\frac{1}{2} y\theta^\top x - 1 \right) \frac{1}{2} yx
 \]

* similar to [Aono et al. 16]
For a good approx: scale features into a small interval and regularize!
Protocol example: how to compute a square?

- The most complex operation in the learning protocol
- ... and we cannot do squares on encrypted numbers with Paillier!

\[u = u_A + u_B \]

\[u^2 = u_A^2 + u_B^2 + 2u_A u_B \]
Protocol example: how to compute a square?

C: Coordinator, *private key holder*

A: Data provider
B: Data provider

(Entities are matched via permutation and mask here)
Protocol example: how to compute a square?

C: Coordinator, *private key holder*

A: Data provider

\[[[u_A]], [[u_A^2]]\]

B: Data provider

\[[[u_B^2]]\]
Protocol example: how to compute a square?

C: Coordinator, *private key holder*

\[
[[u_A]], [[u_A^2]]
\]

\[
[[2u_A u_B]] = 2u_B [[u_A]]
\]

\[
[[u_B^2]]
\]
Protocol example: how to compute a square?

C: Coordinator, private key holder

A: Data provider

B: Data provider

\[
[[u^2]] = [[u_A^2]] + [[u_B^2]] + [[2u_Au_B]]
\]
Protocol example: how to compute a square?

C: Coordinator, *private key holder*

\[
[[u^2]] = [[u_A^2]] + [[u_B^2]] + [[2u_Au_B]]
\]
Protocol example: how to compute a square?

C: Coordinator, *private key holder*

\[
\left[\left[u^2 \right] \right] \quad \text{Decrypt:} \quad u^2
\]

A: Data provider

B: Data provider

\[u_A \quad \text{and} \quad u_B \]
Protocol example: how to compute a square?

C: Coordinator, private key holder

\[
\begin{bmatrix} u^2 \end{bmatrix}
\]

Decrypt:

\[u^2 \]

C can take a gradient step, with gradient in the clear

A: Data provider

B: Data provider

\[u_A \]

\[u_B \]
Overview

● End-to-end system:
 ○ Security assumptions / requirements
 ○ Entity resolution
 ○ Learning on private data

● Deployment & experiments
Deployment

Deployment at each party -- 2 *data providers & coordinator* -- with docker images and kubernetes cluster.

AWS instance, R4.4xlarge:

- 16 vCPU
- 60 GBs of RAM (DDR4)
- Up to 10 Gigabit network
Scalability of entity resolution

time = hashing + matching + permutation
Scalability of entity resolution

\[
\text{time} = \text{hashing} + \text{matching} + \text{permutation}
\]

20 machines per node: 50min instead of 6h
Scalability of learning

time = 1 learning epoch + evaluation
Scalability of learning

\[\text{time} = 1 \text{ learning epoch} + \text{evaluation} \]

16 machines per node: down to 200 min
Summary and future work

- End-to-end solution for **entity resolution + logistic regression on vertically partitioned** data
- Security:
 - Records remain confidential from other parties
 - Knowledge of common entities is not shared
- Scalability:
 - Commercial deployment on up to x1M rows and x100 features
- Work in progress:
 - Further parallelization: **cluster + GPUs**
 - 3+ data providers
 - Learning bypassing entity resolution [Nock et al. 15, Patrini et al. 16]
Thank you!

For more info:

- Website: www.n1analytics.com
- Blog: blog.n1analytics.com
- Twitter: @n1analytics

We are hiring!

- Research Scientist - Machine Learning (Sydney): jobs.csiro.au/s/LDOXTy
References

- P. Paillier, **Public-key cryptosystems based on composite degree residuosity classes**, EuroCrypt99
- R. Nock, G. Patrini, A. Friedman, **Rademacher observations, private data and boosting**, ICML15
- Y. Aono, T. Hayashi, T. P. Le, L. Wang, **Scalable and secure logistic regression via homomorphic encryption**, CODASPY16
- G. Patrini, R. Nock, S. Hardy, T. Caetano, **Fast learning from distributed data without entity matching**, IJCAI16