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Secure end to end system

e Vertical partition of a dataset: common entities but different features
o One data provider has the labels
o E.g. banking and insurance data about common customers; labels are
fraudulent activity
e Goal: learn a predictive model in the cross-feature space
o Comparable accuracy as if had all data in one place
o Scale to real-world applications



Secure end to end system

e Vertical partition of a dataset: common entities but different features
o One data provider has the labels
o E.g. banking and insurance data about common customers; labels are
fraudulent activity
e Goal: learn a predictive model in the cross-feature space
o Comparable accuracy as if had all data in one place
o Scale to real-world applications
e Constraints
o Who is who? = Private entity resolution
o Raw data remains private = federated learning + privacy
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Security assumptions / requirements

e Participants are honest-but-curious:
o they follow the protocol
o they are not colluding
o but: they try to infer as much as possible
e Reasonable: participants have an incentive to compute an accurate model.
e Only the Coordinator holds the private key used to decrypt messages.
e No sensitive data (raw or aggregated) leaves a data provider unencrypted
o ...but computation uses unencrypted individual records locally.
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Privacy-preserving entity resolution

e Goal: match corresponding rows in two distinct databases

Name DOB Name DOB

Klara Jovel 07/09/1942 Tori Mckone | 07/06/1921
Scott Redo 04/08/1923 \? / Scotty Undo | 24/01/1965
Tori Mckone |07/06/1921 > ® ‘?: Scott Redo | 04/08/1923
Rusty Brod 25/07/2014 Clara Jovel 07/09/1942

e Constraint: can’t share Personally Identifiable Information (PII)




Privacy-preserving entity resolution

e Goal: match corresponding rows in two distinct databases

Name DOB Name DOB

Klara Jovel 07/09/1942 Tori Mckone | 07/06/1921
Scott Redo 04/08/1923 \? / Scotty Undo | 24/01/1965
Tori Mckone |07/06/1921 > ® ‘?: Scott Redo | 04/08/1923
Rusty Brod 25/07/2014 Clara Jovel 07/09/1942

e Constraint: can’t share Personally Identifiable Information (PII)

e Solution: fuzzy & private matching




Privacy-preserving entity resolution
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Privacy-preserving entity resolution

C: Coordinator

s~ _ - Preserves similarity, e.g. by hash on
"""""""" bigrams [Schnell et al. 11]
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Privacy-preserving entity resolution
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Privacy-preserving entity resolution: the output

permutations: align
row of A and B
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Permutation &
encrypted mask - -

encrypted mask: vector of
encrypted 0/1 to select matches

No data provider knows which/how many entities are in common!
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Background: Paillier Partially Homomorphic Encryption

[[u]]is the encryption of u
Addition:

[[ul] 4 [[ol] = [lu+ ]

Scalar multiplication:

n - [[u]] = [[nu]

Extend to vectors = encrypted linear algebra (almost)!
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Background: Paillier Partially Homomorphic Encryption

e [[u]]is the encryption of u
e Addition:

[[ul] 4 [[ol] = [lu+ ]

e Scalar multiplication:

n - [[u]] = [[nu]

Extend to vectors = encrypted linear algebra (almost)!
Our Paillier implementations:

o Python github.com/n1analytics/python-paillier

o Java github.com/n1analytics/javallier
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Logistic regression

e Goal: Distributed SGD for logistic regression keeping data private

e Challenges:
o Constrained by Paillier to simple arithmetics (e.g.: no log, no exp)
o Data is split by features and cannot leave their data providers
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Logistic regression

e Goal: Distributed SGD for logistic regression keeping data private

e Challenges:
o Constrained by Paillier to simple arithmetics (e.g.: no log, no exp)
o Data is split by features and cannot leave their data providers

e Solutions:
o Gradient and loss approximation using Taylor expansion, up to 2nd
order
o Collaborative protocol for computing gradients and loss values
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Taylor approximation®

e Logistic loss, ((0) = log(1 + eXp(—yQT )

il ~log2— oyf Ta+ (07 0)?
d its gradient  V£(6) < ! 1)
e and its gradien = — yx
1+e o'z
1 1
~ <§y«9Tx — 1) §yac

* similar to [Aono et al. 16]
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Logistic loss vs. its Taylor approximation
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For a good approx: scale features into
* asmall interval and regularize !

dataset #rows | #features :Jlifgrancy la\JIClC 1,11:::;1}; .
iris 100 3 100 100
digits (odd vs. even) | 1500 64 94.3 94.3
mnist (odd vs. even) | 60K 784 89.5 87.8
give me some credit | 168K 10 87.0 87.1
covtype 500K 54 71.1 68.9
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Protocol example: how to compute a square?

e The most complex operation in the learning protocol
e ... and we cannot do squares on encrypted numbers with Paillier!

S
|

uA +Up

(\Y)

u® =u +uh + 2uaup

21



Protocol example: how to compute a square?

C: Coordinator, private key holder
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Protocol example: how to compute a square?

C: Coordinator, private key holder
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Protocol example: how to compute a square?

C: Coordinator, private key holder
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Protocol example: how to compute a square?

C: Coordinator, private key holder

S~ —”
—— -_—
[ —

———_——————____ e m m m e = e
=
—

——
———
-
-

[[UQH :[[ui]] + HUQB

—
~~~
~

I

25



Protocol example: how to compute a square?

C: Coordinator, private key holder
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Protocol example: how to compute a square?

C: Coordinator, private key holder
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Protocol example: how to compute a square?

C: Coordinator, private key holder

2 Decrypt: 2 C can take a gradient
[ [u ] ] u- e step, with gradient in
. f _ the clear
A: Data provider " 7-- o P B: Data provider
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\ /
\ /
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Deployment

Deployment at each party -- 2 data providers & coordinator -- with docker images
and kubernetes cluster.

AWS instance, R4.4xlarge:
Compute C: Coordinator

e 16vCPU /’\ _________
e 60 GBs of RAM (DDR4) N N

e Up to 10 Gigabit network A Compute [<—\—— | Compute B

é ‘, ! é

Data 1 ; Data
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Scalability of entity resolution
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Scalability of entity resolution

20 machines per node:

50min instead of 6h
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Scalability of learning

time = 1 learning epoch + evaluation
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Scalability of learning

time = 1 learning epoch + evaluation
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Summary and future work

e End-to-end solution for entity resolution + logistic regression on vertically
partitioned data
e Security:
o Records remain confidential from other parties
o Knowledge of common entities is not shared
e Scalability:
o Commercial deployment on up to x1M rows and x100 features
e Work in progress:
o Further parallelization: cluster + GPUs
o 3+ data providers
o Learning bypassing entity resolution [Nock et al. 15, Patrini et al. 16]
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Thank you!

For more info:

e \Website: www.n1analytics.com
e Blog: blog.n1analytics.com
e Twitter: @n1analytics

We are hiring!

e Research Scientist - Machine Learning (Sydney): jobs.csiro.au/s/LDOXTy
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