Privacy-preserving entity resolution and logistic regression on encrypted data

Giorgio Patrini &

Mentari Djatmiko, Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Maximilian Ott, Huy Pham, Guillaume Smith, Brian Thorne, Dongyao Wu **N1 Analytics** @ Data61 CSIRO

PSML workshop, ICML17 11/8/2017, Sydney

Scenario & motivation

Secure end to end system

- Vertical partition of a dataset: common entities but different features
 - One data provider has the *labels*
 - *E.g.* banking and insurance data about common customers; labels are fraudulent activity
- **Goal**: learn a predictive model in the cross-feature space
 - Comparable **accuracy** as if had all data in one place
 - **Scale** to real-world applications

Secure end to end system

- Vertical partition of a dataset: common entities but different features
 - One data provider has the *labels*
 - *E.g.* banking and insurance data about common customers; labels are fraudulent activity
- **Goal**: learn a predictive model in the cross-feature space
 - Comparable **accuracy** as if had all data in one place
 - Scale to real-world applications
- Constraints
 - Who is who? ⇒ Private entity resolution
 - Raw data remains private ⇒ federated learning + privacy

Overview

- End-to-end system:
 - Security assumptions / requirements
 - Entity resolution
 - Learning on private data
- Deployment & experiments

Security assumptions / requirements

- Participants are **honest-but-curious**:
 - they follow the protocol
 - they are not colluding
 - **but:** they try to infer as much as possible
- Reasonable: participants have an incentive to compute an accurate model.
- Only the Coordinator holds the private key used to decrypt messages.
- No sensitive data (raw or aggregated) *leaves* a data provider unencrypted
 ...but computation uses unencrypted individual records *locally*.

Overview

- End-to-end system:
 - Security assumptions / requirements
 - Entity resolution
 - Learning on private data
- Deployment & experiments

• **Goal**: match *corresponding* rows in two distinct databases

Name	DOB		Name	DOB	
Klara Jovel	07/09/1942		Tori Mckone	07/06/1921	
Scott Redo	04/08/1923		Scotty Undo	24/01/1965	
Tori Mckone	07/06/1921		Scott Redo	04/08/1923	
Rusty Brod	25/07/2014		Clara Jovel	07/09/1942	

• **Constraint**: can't share Personally Identifiable Information (PII)

• **Goal**: match *corresponding* rows in two distinct databases

Name	DOB		Name	DOB	
Klara Jovel	07/09/1942		Tori Mckone	07/06/1921	
Scott Redo	04/08/1923		Scotty Undo	24/01/1965	
Tori Mckone	07/06/1921		Scott Redo	04/08/1923	
Rusty Brod	25/07/2014		Clara Jovel	07/09/1942	

- **Constraint**: can't share Personally Identifiable Information (PII)
- Solution: fuzzy & private matching

C: Coordinator

Name, DOB, gender, etc. of A's customers

C: Coordinator

Privacy-preserving entity resolution: the output

No data provider knows which/how many entities are in common!

Overview

- End-to-end system:
 - Security assumptions / requirements
 - Entity resolution
 - Learning on private data
- Deployment & experiments

Background: Paillier Partially Homomorphic Encryption

- [[u]] is the encryption of u
- Addition:

[[u]] + [[v]] = [[u + v]]

• Scalar multiplication:

 $n \cdot [[u]] = [[nu]]$

• Extend to vectors \Rightarrow encrypted linear algebra (almost)!

Background: Paillier Partially Homomorphic Encryption

- [[u]] is the encryption of u
- Addition:

[[u]] + [[v]] = [[u + v]]

• Scalar multiplication:

 $n \cdot [[u]] = [[nu]]$

- Extend to vectors \Rightarrow encrypted linear algebra (almost)!
- Our Paillier implementations:
 - Python github.com/n1analytics/python-paillier
 - Java <u>github.com/n1analytics/javallier</u>

Logistic regression

- **Goal:** Distributed SGD for logistic regression keeping data private
- Challenges:
 - Constrained by **Paillier** to simple arithmetics (e.g.: no log, no exp)
 - Data is split **by features** and cannot leave their data providers

Logistic regression

- Goal: Distributed SGD for logistic regression keeping data private
- Challenges:
 - Constrained by **Paillier** to simple arithmetics (e.g.: no log, no exp)
 - Data is split **by features** and cannot leave their data providers

- Solutions:
 - Gradient and loss approximation using **Taylor expansion**, up to 2nd order
 - Collaborative protocol for computing gradients and loss values

Taylor approximation*

• Logistic loss,
$$\ell(\theta) = \log(1 + \exp(-y\theta^{\top}x))$$

Only used for stopping criterion

$$\approx \log 2 - \frac{1}{2}y\theta^{\top}x + \frac{1}{8}(\theta^{\top}x)^2$$

• and its gradient
$$\nabla \ell(\theta) = \left(\frac{1}{1 + e^{-y\theta^{\top}x}} - 1\right)yx$$

 $\approx \left(\frac{1}{2}y\theta^{\top}x - 1\right)\frac{1}{2}yx$

* similar to [Aono et al. 16]

Logistic loss vs. its Taylor approximation

dataset	# rows	#features	accuracy sklearn	accuracy N1 Taylor
iris	100	3	100	100
digits (odd vs. even)	1500	64	94.3	94.3
mnist (odd vs. even)	60K	784	89.5	87.8
give me some credit	$168 \mathrm{K}$	10	87.0	87.1
covtype	$500 \mathrm{K}$	54	71.1	68.9

- The most complex operation in the learning protocol
- ... and we cannot do squares on encrypted numbers with Paillier !

$$u = u_A + u_B$$
$$u^2 = u_A^2 + u_B^2 + 2u_A u_B$$

C: Coordinator, private key holder

permutation and mask here)

Overview

- End-to-end system:
 - Security assumptions / requirements
 - Entity resolution
 - Learning on private data
- Deployment & experiments

Deployment

Deployment at each party -- 2 data providers & coordinator -- with docker images and kubernetes cluster.

AWS instance, R4.4xlarge:

- 16 vCPU
- 60 GBs of RAM (DDR4)
- Up to 10 Gigabit network

Scalability of entity resolution

rows B1000 **—** 10K ~6h 100K time = 1M time [min] 100 hashing + - 10M matching + 10 permutation 1 0 10K 1K 100K 1M#rows A

Scalability of entity resolution

20 machines per node: **50min instead of 6h**

Scalability of learning

time = 1 learning epoch + evaluation

Scalability of learning

time = 1 learning epoch + evaluation

16 machines per node:

Summary and future work

- End-to-end solution for entity resolution + logistic regression on vertically partitioned data
- Security:
 - Records remain confidential from other parties
 - Knowledge of common entities is not shared
- Scalability:
 - Commercial deployment on up to x1M rows and x100 features
- Work in progress:
 - Further parallelization: cluster + GPUs
 - 3+ data providers
 - Learning bypassing entity resolution [Nock et al. 15, Patrini et al. 16]

Thank you!

For more info:

- Website: <u>www.n1analytics.com</u>
- Blog: <u>blog.n1analytics.com</u>
- Twitter: @n1analytics

We are hiring!

• Research Scientist - Machine Learning (Sydney): jobs.csiro.au/s/LDOXTy

References

- P. Paillier, **Public-key cryptosystems based on composite degree residuosity classes**, EuroCrypt99
- R. Schnell, T. Bachteler, J. Reiher, **A novel error-tolerant anonymous linking code**, Tech report 2011
- R. Nock, G. Patrini, A. Friedman, Rademacher observations, private data and boosting, ICML15
- Y. Aono, T. Hayashi, T. P. Le, L. Wang, Scalable and secure logistic regression via homomorphic encryption, CODASPY16
- G. Patrini, R. Nock, S. Hardy, T. Caetano, Fast learning from distributed data without entity matching, IJCAI16