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(Fully) supervised learning

» Binary classification

1., Wy

S ={(xi,y:),? € /m]} sampled from D
over R* x {—1,1}
* Learn a linear model h € H

» Minimize the empirical risk associated
with a surrogate loss /(x)

argmin
heXH

s [(yh(x))] = argmin Rg ¢(h)

heH



Weakly supervised learning

corrupt = sample 3
D > D > S

* Weak labels may be wrong, missing,
multi-instance label constraints, etc.

« Marginal of X is the same
* The goal is unchanged: generalize to D



Risk with weak labels is non-sense




A sample of proposed solutions

* Individual labels are corrupted: engineer a robust loss
argmin E s [((yh(x))]
h




A sample of proposed solutions

* Individual labels are corrupted: engineer a robust loss

argmin
h

~

sll(yh(x))]

« Some labels are missing: regularize with unlabelled data

argmin Es|¢(yh(x))] + X REG({x}, h)

he



A sample of proposed solutions

* Individual labels are corrupted: engineer a robust loss
argmin E s [((yh(x))]
h

« Some labels are missing: regularize with unlabelled data

argmin Eg[/(yh(x))] + A ReG({z}. )

* Label knowledge on sets: enforce the constraints

argmin  Ez|[/(yh(x))] + X CONSTR({(x,y)}, h)
heH,ye{x1}




Drawbacks

A mix of

* Need to dream up new:
— losses (possibly non-convex)
— regularizers/ constraints
— optimization algorithms
» Label as latent variable => non-convex
objective
* No unified approach



Solution principles

Divide and conquer (decoupling)
Treat labels issues and learning separately

Do not reinvent the wheel (modularity)
Let’s reuse well-known algorithms for risk minimization

Computational laziness

“One should solve the problem directly and never solve a
more general problem as an intermediate step” [V. Vapnik’98]

Statistical sufficiency

If we know what is sufficient for learning, poor labels are not
a problem



A 2-step framework

(1) Estimate a sufficient statistic u for the
labels from weak supervision

S —

(2) Plug it into a standard loss ¢ and call any
algorithm for empirical risk minimization

argmin Rz ,(h, p)
heH ’



A unifying approach

Learning from label proportions with
» logistic loss [Quadrianto et al. "09]
» symmetric proper loss [Patrini et al. "14]

Learning with noisy labels with
» logistic loss [Gao et al. "16]

“Indirect supervision” with
* logistic loss [Raghunathan et al. “16]
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Statistical sufficiency

* Intuition: a sufficient statistic aggregates
from data all information about the model
parameters



Statistical sufficiency

* Intuition: a sufficient statistic aggregates
from data all information about the model
parameters

* Definition: u is sufficient for 0§ wrt. Y
when for each pair of outcomes y,y" we
have

1]33((99“5((5/)))) does not depend on Y <= pu(y) = u(y’)



Exponential family <> logistic loss

» Conditional exponential family

p(ylz) = exp{(0,yx) —log)  exp(O,yx)}

label independent



Exponential family <> logistic loss

» Conditional exponential family

p(ylz) = exp{(0,yx) —log)  exp(O,yx)}

label independent

» Log-likelihood leads to logistic loss

i10g269<9,$i> _ <07u’> — ilog (1 4 6—2yi<9,wi>)
=1 Y i=1

SuﬁiCieﬂCy
of p for y



Mean operator & linear-odd losses

* Mean operator

ps = Eslyx) mZyiv




Mean operator & linear-odd losses

* Mean operator

ps = Es|yx] Zyzwz c R

 Linear-odd loss, a-1.OL

Jda € R, = (U(x) — l(—x)) = lo(x) = ax

generic X
argument



[.oss factorization

* Linear model A
. Linear-odd loss z({(z) — {(—x)) = {y(x) = ax
* Given a sample 3, define a “double sample”

Sop = {(CBi,O'),i S [m],a S {::1}}




[.oss factorization

 Linear model A
. é{near—odd loss %(f(ﬂi‘) —U(—x)) = lo(x) =
iven a sample S, define a “double samp_l ffx
e

Sop = {(:ci,a),i S [m],a S {::1}}

Ihen:
Rg h) = —1 R +a L

nor COﬂVGXity

label independent e
of ¢ required



Loss factorization: proof

Rs ¢(h) =

gufficiency
of p fory



Sufficiency with losses

p is sufficient for y when V¢ € £,Vh € H
and for each pair of learning samples 8, 8’ :

Rs ¢(h) — Rs’ ¢(h) does not depend on y <= us = ps



Sufficiency with losses

p is sufficient for y when V¢ € £,Vh € H
and for each pair of learning samples 8, 8’ :

Rs ¢(h) — Rs’ ¢(h) does not depend on y <= us = ps

Sufficiency as a consequence of factorization

1

Rs,(h) = 5 Rs,, 0(h) +a-h(ps)



Linear-odd losses: examples

loss ¢ odd term ¢,
LOL l(x) ax
p-loss plz| — pr +1 —pz (p > 0)
unhinged 1l —=x —x
perceptron max (0, —x) —x
double-hinge | max(—x,1/2max(0,1 — x)) —x
SPL ay + E*(—aﬁ)/bg —a:/(ng)
logistic log(14+e™%) —x/2
square (1—2)° —2x
Matsushita vVi+z?—= —x




Linear-odd losses: examples

loss ¢ odd term ¢,
LOL l(x) ax
p-loss plz| — pr +1 —pz (p > 0)
unhinged 1l —=x —x
perceptron max (0, —x) —x
double-hinge | max(—x,1/2max(0,1 — x)) —x
SPL ay + E*(—aﬁ)/bg —a:/(ng)
logistic log(14+e™%) —x/2
square (1—2)° —2x
Matsushita vVi+z?—= —x

e Bonus: convex LOLs are calibrated when a < 0




Generalization bound

Loss is a-LoL and Lipschitz
Bounded feature and model spaces
Bounded loss C = max, ¢(x)

A

Let 0 = argmineej{ RS7£(0)



Generalization bound

Loss is a-LoL and Lipschitz
Bounded feature and model spaces
Bounded loss C = max, ¢(x)

Let é = argmineej{ RS7£(0)

Then for any 0 > 0, with probability at least 1 — o:

Rp(0) — inf Rp(6) <O (\/Lﬁ) N

C.0 —,log—) +lal-O (o — pslle)



Generalization bound

* Lossis a-LoL and Lipschitz
* Bounded feature and model spaces
* Bounded loss C = max, ¢(z)

A

e Let 0 = argmineej{ RS7£(0)

Then for any 0 > 0, with probability at least 1 — o:

A . 1 lexity
Ry o(0) — 912%3{ Rp¢(0) <O <\/—ﬁ> + Z?fr?é)ace H

1 1
C-0 (W,log 5) + la] - O (||pp — psl2)

loss non_linearlty M |a| -0 Lv log 1
N



Example: SGD (step 2)

Algorithm SGD

Input: S, /;
m < |8
0° — 0
Foranyt=1,2,...:
Sample i ~ U(|m])
nt < 1/t
Pick any v € 94(y; (0", x;))
0!t «— 0! — ntv
Output: 6!}




Example: SGD (step 2)

Algorithm  uSGD

Input: 5o, i, £ is a-LOL;

m <— ’8233‘

0¥ < 0

Foranyt=1,2,...:
Sample i ~ U (Im)) ouly changes
N < 1/t wrt SGD
Pick any v € 0¢(y;(0", z;))
't — 0" — nt(v + ap/2)

Output: 0!




Example: SGD (step 2)

Algorithm  uSGD

Input: 5o, i, £ is a-LOL;

m <— ’8233‘

0° — 0

Foranyt=1,2,...:
Sample i ~ U (Im)) ouly changes
N < 1/t wrt SGD
Pick any v € 0¢(y;(0", z;))
Ot «— 0 — n'(v + ap/2)

Output: 0!

* Similar with proximal algorithms
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Asymmetric label noise

Sample 8§ = {(x;,7;)}7™, corrupted by
asymmetric noise rates py,p_



Asymmetric label noise

Sample 8§ = {(x;,7;)}7™, corrupted by
asymmetric noise rates py,p_

By the method of [Natarajan et al. "13] an
unbiased estimator of ug is

s = B, y— - —p+) | wors
1 —=p_ —py




Asymmetric label noise

Sample 8§ = {(x;,7;)}7™, corrupted by
asymmetric noise rates py,p_

By the method of [Natarajan et al. "13] an
unbiased estimator of ug is

o |y=-—p+) | o .
s = 1L x|, Eplps] = ps
L 1-p-—py v

This is step (1), then run pu-SGD for (2).



Generalization bound under noise

Same as before, except that now we learn with jig

Then for any 0 > 0, with probability at least 1 — o:




Generalization bound under noise

Same as before, except that now we learn with jig

Then for any 0 > 0, with probability at least 1 — o:

) 1 complexity
RQE(H) B lgﬁc RD’K(H) <0 <ﬁ> untouched
L log o L
C . O R 10 — . O o 10 1
" g5>+1_p‘p+ (m gcs)
h\\}
noise aftects the ///



Empirics

* Artificially corrupted data. Noise rates up to ~50%

\\\

« SGD vs. pu -SGD with the same parameters \\

* Test error average difference over 25 runs )
(p—,ps) — (.00,.00) (.20, .00) (.20,.10) (.20, .20) (.20, .30) (.20, .40) (.20,.49)
dataset ~ SGD  pSGD | SGD  pSGD | SGD  pSGD | SGD  pSGD | SGD  uSGD | SGD  puSGD | SGD  psGD
australian 0.13 +.01 | 0.15 -.01 | 0.14 +.00 | 0.14 +4.01 | 0.16 —.01 | 0.26 —.09 | 0.45 —.25
breast-can.0.02  4.01 | 0.03  £.00 | 0.03  £.00 | 0.03 +£.00 | 0.05 -—.01 | 0.11 —.06 | 0.17 —.08
diabetes 0.28 —-.03 | 029 -—-.03 | 029 -.03 | 027 -—.02|028 —-.02 039 -—.13|0.59 —.22
german 027 -—.02 | 026 =00 | 027Y -.02]029 -.02 031 -.01|031 =£00]031 =.00
heart 0.1 +.01 017 -.01|0.16 =+.00|0.17 =00 018 -—.01|026 —.08] 035 —.15
housing 0.17 —-.03 | 023 —-.05| 022 —-.04 | 020 —-.02|022 —-.03|034 -—-.12|041 —-.13
ionosphere 0.14 +05 1019 -.05|020 -.05|020 -—-.03|021 -.03|035 -—.13|054 —.29
sonar 027 £00]029 +.02]029 401|034 -—-.04)|036 —-.03|043 —-.10| 045 —-.05




Empirics

* Artificially corrupted data. Noise rates up to ~50%

\\\

« SGD vs. pu -SGD with the same parameters \\

* Test error average difference over 25 runs )
(p—,ps) — (.00,.00) (.20, .00) (.20,.10) (.20, .20) (.20, .30) (.20, .40) (.20, .49)
dataset ~ SGD  pSGD | SGD  pSGD | SGD  pSGD | SGD  pSGD | SGD  uSGD | SGD  puSGD | SGD  psGD
australian 0.13 +.01 | 0.15 -.01 | 0.14 +.00 | 0.14 +4.01 | 0.16 —.01 | 0.26 —.09 | 0.45 —.25
breast-can.0.02  4.01 | 0.03  £.00 | 0.03 £.00 | 0.03 +£.00 | 0.05 -—.01 | 0.11 -—.06 | 0.17 —.08
diabetes 0.28 —-.03 | 029 —-.03 | 029 -.03 | 027 -—.02| 028 —-.02 039 -—.13 | 0.59 —.22
german 027 -—.02 | 026 =x=00|027Y -.02|029 -.02 031 -.01|031 =x00] 031 =.00
heart 0.1 +.01 017 -.01|0.16 =x.00|0.17 =00 018 -—.01|026 —.081| 035 —.15
housing 0.17 —-.03 | 0.23 —-.05| 022 —-.04 | 020 —-.02|022 —-.03|034 -—-.12| 041 —.13
ionosphere 0.14 +05 1019 -.05|020 -.05|020 -—-.03|021 -.03]035 -—.13| 054 —.29
sonar 027 £00]029 +.02]029 401|034 -—-.04)]036 —-.03|043 —-.10| 045 -—.05

=> Still able to learn with one label ~ random

-
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Extended setting

 Multi-class (one-hot): y € {e" :i € [c]|}
=> Noise 1s a transition matrix 7’
Ty; =p(y =€y =e’)
» Estimation of the matrix from noisy data
S — 1T
* Neural networks

h(x) : RY — R®



Neural network
e.g. RGLUa
» For n layers (z generic input) o= max(0:2)

(Vie[n—1)h'Y(2) =W Wz + b))
() (2) = W) 5 4 b
=> b= (™ o h("=D 6. o ()

* Cross-entropy loss

y'L(h(x)) = —y' logsoftmax(h(x))



No trivial decoupling

 Cross-entropy (linear-odd) factorization

last layer =

£(h(z)) = — (W"h" () +b")  jinear model
+1-log Y exp{W/h" (z)+ b}}

Jabel-independent jele]



No trivial decoupling

 Cross-entropy (linear-odd) factorization

last layer =

£(h(z)) = — (W"h" () +b")  jinear model
+1-log Y exp{W/h" (z)+ b}}

Jabel-independent jele]

 The “sufficient statistic” for the labels is a function of all
layers but the last: Eg R ()]



No trivial decoupling

 Cross-entropy (linear-odd) factorization

last layer =

£(h(z)) = — (W"h" () +b")  jinear model
+1-log Y exp{W/h" (z)+ b}}

Jabel-independent jele]

 The “sufficient statistic” for the labels is a function of all
layers but the last: Eg R ()]

e But: if we know the noise T, we can make the statistic
unbiased while training. By [Natarajan et al. "13] :

Es[T ' (—=W"h" (x) — b")]

is unbiased and so is the whole loss



Noise estimation [Menon et al. "15]

* Train on noisy data and obtain p(y|x)

» Then estimate 7' by

- &' = argmax p(y = e'|x)

Vi, j (z,-)€S

L Ty =p(y = €’|x")

» Hp: there are some “perfect examples”,
and the net models p(y|x) perfectly




Noise estimation [Menon et al. "15]

Train on noisy data and obtain p(y|x)

Then estimate 7' by

- &' = argmax p(y = e'|x)

(iB,')ES
L Ty =p(j=€|z")
Hp: there are some “perfect examples”,
and the net models p(y|x) perfectly

N

Rational: mistakes on “perfect examples”
must be due to the noise



2-step solution with neural nets

(1)"

[rain the network on § to obtain 7

argmin Rg ,(h) — p(g|z) = T
h 9

(2) Re-train the network correcting the

sufficient statistic by 7!

A

h* = argmin Rg ,(h,T")
h Y

no change n .
back_propagatlon



Empirics: inject sparse, asymmetric T°

1 0. MNIST, 2 dense layers

0.9/
50.8
5
S0.7|
© === Crossentropy
0.6!| == robust T
me=  robust T
080 02 04 06 0809
noise
0.90/MDB, word embedding
0.85/
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§0.75»
= 0.70|
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©
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958501 02 03 04 05

noise

0.9 CIFAR10, 8-layer ResNet
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o
© 0.7
)
@)
© 0.6
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noise

0.0dMDB, embedding + LSTM

0.85|
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Learning from label proportions
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Learning from label proportions
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(a) Supervised Learning (d) Learning from Proportions

Laplacian

- cids label proportlons regularizef
bag centrol /\

A

U = argmintr (B —1IU) " (B —1IU)) + tr (U ' LU)
Step (1) v

. U — i (by linear algebra)




Learning from distributed datasets

* Data is vertically partitioned: same examples, different
features

« “who-is-who” not know: no shared IDs
 Goal: learn in the product feature space



Learning from distributed datasets

m examples,
partial view

same examples,
other view

* Data is vertically partitioned: same examples, different
features

« “who-is-who” not know: no shared IDs
 Goal: learn in the product feature space

« NO: entity matching

* YES: compute sufficient statistics, Rademacher
observations



Conclusion

* Sufficiency is a powerful tool
— decoupling & modularity
— abstraction

— computational saving (by compression)

e Toward ML

— less like a bag of tricks
— more like engineering

(see also J. Langford’s learning reductions)
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