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Abstract

We present an approach to train a model for classifying ice and open water directly using the
polygon-wise ice concentration available from ice charts. This can be considered as a “learning
from label proportions” (LFLP) problem which has been studied in the last decade and applied to
many real-world applications. Our approach is based on convolutional neural networks (CNNs),
which have been shown to capture representative features and achieve impressive classification
results provided a large number of labeled training samples. We provide a probabilistic formu-
lation to learn from label proportions while considering the proportion bias, and an expectation-
maximization (EM) approach is employed to estimate both the CNN model parameters and infer
the per-pixel labels. Experiments on a large-scale satellite image dataset1 show that our proposed
approach achieves better results than previous approaches for LFLP problems.

1 Introduction

Operational sea ice mapping is very important for ship navigation, environmental study, and many other purposes.
Currently, mapping of sea ice charts is performed daily by a team of experts from the Canadian Ice Service. These
ice charts are formed largely based on their visual interpretation of satellite imagery. Due to the massive scale of
the sea area, accurate high-resolution mapping (e.g. at the pixel level) is not practical. Instead, the ice experts first
divide the sea area into multiple polygons, and then estimate the ice concentration, ice types, and other information
in each polygon. An example of ice charts is shown in Figure 1, in which the ellipses are called “egg codes” defined
by the World Meteorological Organization.

Even though current ice charts provide helpful information about ice conditions at a macroscopic level, they lack
detail because the number of egg code polygons is limited. Mapping requires the effort and experience of the ice
experts, and there might also exist inter-operator bias among different ice experts [2]. Therefore, classification
algorithms for distinguishing ice and open water have the potential to provide higher resolution, more accurate,
and more systematic ice charts.

Previously, supervised classification methods such as neural networks [3] and support vector machines (SVM)
[4] have been successfully applied for sea ice classification. However, the delineation of pixelwise ground truth
is difficult and time-consuming due to the large image size, the complexity of ice and weather conditions, and
the uncertainty in some transiting areas. If only a small number of pixels are used for training, they might be
incapable of representing the data distribution due to the within-scene and across-scene variation of ice and water
characteristics.

Considering the large amount of ice charts produced in recent years, developing an algorithm that can use the
ice charts directly for training would very useful. Learning a model for ice-water classification using the ice
concentration, i.e., the proportion of the ice class in the polygons, can be considered as a LFLP problem by
treating the polygons as bags. This topic has been studied recently in the machine learning community, and mainly

1http://hdl.handle.net/10864/WJ7VY
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Figure 1: An ice chart [1] with the egg codes, recording the total ice concentration, the partial ice concentration,
the stage of ice development, and the form of ice in the polygon. For example, the egg code G means that the
polygon consists of 50% ice, including 10% gray ice, 20% medium first-year ice, and 20% first-year thin ice.

applied to situations where there are privacy constraints or when the labels are expensive to collect [5, 6, 7]. Our
problem and many other remote sensing classification problems fall under the second scenario. The main difficulty
of our problem compared to those related to privacy constraints is that the ice concentration is estimated by human
beings instead of being calculated from the true labels, and thus may be biased from the true proportions.

In this paper, we propose a method based on CNNs and probabilistic graphical models to learn a classifier from
label proportions. In recent years, CNNs have been widely used for a variety of computer vision applications.
It has been found that CNNs are capable of representing the data better than hand-crafted feature descriptors for
natural images [8], medical images [9], and recently for remote sensing images [10]. However, the success of
CNNs has mirrored and exploited the growth of large labeled datasets, such as ImageNet [8]. Our work departs
from previous approaches that employ CNNs to output per-pixel predictions, such as scene parsing [11, 12], in
that dense pixelwise labels are not available. The proposed algorithm is evaluated using both the label proportions
derived from per-pixel ground truth at different noise levels and those provided by the ice experts.

2 Related work

The LFLP problem is a special case of weakly supervised learning, and is also related to other types of learning
methods. If there is only one class in each bag, this problem is reduced to standard classification. If the proportions
are unknown, it becomes a multiple instance learning problem. Class uncertainty is also associated with the label
proportions. The most uncertain case is when the class proportions are uniform across a bag. Fortunately, this
situation is avoided by ice experts when they form the polygons, and this will be discussed later in Section 5.1.

Despite the wide-applicability of the LFLP problem, it received little attention up until the last decade. Kück
and de Freitas [13] first addressed the problem by building a generative model and using the MCMC sampler
for training. Quadrianto et al. [5] provided a formal description of this problem, and proposed a mean operator
to reconstruct the labels that could offer the same performance guarantees of uniform convergence as the fully-
supervised counterparts. However, their method is based on the assumption that the conditional distribution of the
data is independent of the bags when the labels are given. This assumption is not satisfied when the samples are
not grouped into bags by random. For the ice-water classification problem, for instance, the data distribution is
highly dependent on the bags.
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More recently, Rueping [6] proposed a method that applies a SVM at the bag level. The mean of the bags and their
labels are calculated from the label proportions using an inverse calibration method. Yu et al. [7] also formulated the
problem within an SVM framework, and attempted to optimize the labels and the model parameters simultaneously.
To address the non-convex integer programming problem, they proposed two algorithms to solve the problem, the
first one using an alternating optimization method and the second one using an convex relaxation method. Our
method is very close to their first method. However, our gradient-based formulation permits a much larger and
more complex family of models that have the capability of learning rich feature representations: so-called deep
neural networks.

Recently, several approaches have applied CNNs in the weakly supervised learning setting for computer vision
tasks. Oquab et al. [14] found that by only training on image-level tags, CNNs can generate accurate image-level
labels and predict approximate locations of objects, performing comparably to fully-supervised approaches. Pathak
et al. [15] proposed a method to learn pixelwise labeling from image-level tags by imposing linear constraints on the
output labeling of a CNN classifier. Kotzias et al. [16] proposed an objective function that leverages instance-based
similarity and group-level label information based on deep learning methods to learn instance-based classifiers.
Papandreou et al. [17] provided a probabilistic formulation for semantic image segmentation based on CNN under
both weakly-supervised and semi-supervised settings, and solved it by using an EM method. Our approach can be
considered as an extension of their approach to the LFLP problem.

3 Preliminaries

For a LFLP problem, we aim to learn a classifier to predict the pixelwise labels y given the image patches x, the
bag information B, and the label proportion z for each bag. Each bag Bi contains a set of image patches Si. |B|
is the number of bags, and |Si| is the number of patches in Bi. Our specific problem is a binary classification
problem, i.e., y ∈ {−1, 1}, and we define +1 for ice and -1 for open water. The label proportion z ∈ [0, 1] is the
proportion of the ice in a bag. If the label proportion is accurate, it can be represented by the labels in the bag:

zi =
∑|Si|

s=1 ys
2|Si| + 1

2 . In practice, however, there is a bias between the label proportion estimated by an ice expert
and the true proportion, no matter how experienced the ice expert is. In Section 4, a probabilistic framework is
presented to model this LFLP problem by considering the proportion bias.

4 The proposed algorithm

The LFLP problem can be formulated into a probabilistic graphical model:

P (x,y, z; θ) = P (x)

|B|∏
i=1

{
|Si|∏
s=1

P (ys | x; θ)P (zi | yi) } (1)

where θ are the CNN parameters.

In our problem, the image data x and the label proportion of each bag zi are observed, and the pixelwise labels ys
are latent variables. We make the assumption that the label proportions are independent of the image data if the
labels are given. P (z | y) can thus be defined as

P (zi | yi) =
1

Z
exp {− |ẑi − zi|} =

1

Z
exp

{
−

∣∣∣∣∣
∑|Si|
s=1 ys
2|Si|

+
1

2
− zi

∣∣∣∣∣
}

(2)

where ẑ are the label proportions calculated from the predicted labels, and Z =
∫ 1

0
exp { − |ẑi − zi| }dzi is a

normalization constant.
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An EM approach is used to alternatively infer the pixelwise labels y and update the model parameters θ from the
training data similar to [17]. In the E step, the labels are estimated by

y = argmax
y

P (y | x; θ′)P (z | y)

= argmax
y

{logP (y | x; θ′) + logP (z | y)}

= argmax
y

|B|∑
i=1


|Si|∑
s=1

fs(ys | x; θ′)− |Si|

∣∣∣∣∣
∑|Si|
s=1 ys
2|Si|

+
1

2
− zi

∣∣∣∣∣


(3)

where fs(ys | x; θ′) is the output of the CNN classifier for sample s.

From (3), we can see that instead of fixing the labels entirely by the label proportions provided, the optimum
label configuration is determined by leveraging the predictions made by the CNN classifier and the observed label
proportion. This is important for our application due to the existence of the proportion bias.

To solve (3), we can use the bag-wise optimization method in [7] which is also designed for a binary classification
problem. For each bag Bi, we first initialize all the labels into -1, and sort the samples based on the value of
fs(ys | x; θ′). Then, labels are flipped from the one with smallest value. After each flip, the log-likelihood
for the corresponding label configuration and label proportion is calculated. [7] has shown that the maximum
log-likelihood value by incrementally flipping all the labels is the optimal solution.

In the M step, the complete data log-likelihood Q(θ; θ′) ≈ logP (ŷ | x; θ) is optimized by mini-batch stochastic
gradient descent (SGD) with fixed y similar to [17]. The complete algorithm is shown in Algorithm 1.

Algorithm 1 The Alter-CNN algorithm for binary classification from label proportions.

1: Inputs:
Image data x, bags B, label proportions of each bag zi, i ∈ {1, ..., |B|}, initial CNN
parameters θ′, and initial labels y.

2: E-step: Optimize y. For each bag Bi:
3: Initialize all of the labels yi to -1.
4: Sort the samples based on fs(ys | x; θ′).
5: Flip the negative labels incrementally from the smallest fs(ys | x; θ′) value, and calculate the correspond-

ing log-likelihood using (3).
6: Change the labels of bag Bi to the label configuration corresponding to the maximum log-likelihood value.
7: M-step: Optimize θ.
8: Q(θ; θ′) = logP (ŷ | x, θ) =

∑|B|
i=1

∑|Si|
s=1 logP (ŷs | x, θ).

9: Calculate5θQ(θ; θ′) and use SGD to update θ′.

5 Experiments

We demonstrate the performance of our approach using a sea ice dataset. The proposed Alter-CNN algorithm
is compared with Invcal-SVM [6] and Alter-∝SVM [7] on hand-crafted features that have been demonstrated to
work well for similar data and classification tasks. The Alter-CNN is implemented using Theano. The tests are
performed on a workstation with 2 Intel Xeon E5-2620 CPUs (6-core each and 2.10GHz), and a Nvidia Titan Black
GPU.

5.1 Dataset

The dataset used in our experiments is obtained from the C-band RADARSAT-2 SAR satellite over the Beaufort
and Chukchi Sea area from May to December in the year 2010. Compared to other sensors, the SAR sensors are
capable of all-weather and all-day imaging which is important for sea ice monitoring. The data were captured in the
ScanSAR Wide mode, which is the most useful beam mode for sea-ice monitoring. HH and HV dual-polarizations
are provided in the ScanSAR Wide mode. The image sizes are around 2,500 × 2,500 pixels after performing 4
× 4 block averaging on the original images. The spatial resolution of all these images is 50 metres. The human
estimate of the ice concentration of each egg code polygon for all the images is provided by an experienced ice
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analyst, and accurate pixelwise ground truth for each image has been created by considering both the images and
the estimated ice concentration. More information about the dataset can be found in [4].

In our experiments, we exclude images which contain only ice or only open water in order to better evaluate the
performance of the LFLP methods, though including those images can further improve classification performance.
Ten high-resolution images containing 140 bags are available after excluding the homogeneous images. The cor-
rect proportion of ice calculated from the pixelwise ground truth and the estimated proportion by ice experts are
compared in Figure 2. The ice experts usually try to reduce label ambiguity by drawing polygons that contain
a majority of ice or open water, and therefore the proportions mainly lie at opposite ends of the histogram. The
total percentage of ice for all the images is 51.68%, which is very close to the estimated percentage by ice experts
(52.19%). However, the average squared error of the estimated proportions weighted by the number of samples in
the bags is 85.39%, which verifies that macroscopically the ice experts are good at estimating the ice concentration,
but for a specific area they may make mistakes and there may be inconsistency among the different ice experts.
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Figure 2: The histogram of the correct ice proportions (left) and the estimated proportions by ice experts (right)
for all of the bags.

5.2 Separation of training and test data

Since some of the images have very unique data distributions, the classification performance of image-wise training
and testing is poor even if the pixelwise labels are used. Therefore, we perform bag-wise training and testing. A
five-fold cross-validation is performed by randomly selecting bags for all the images. For the CNN, a total number
of 10,000 patch samples are selected from each image for training and testing, and 20 percent of the bags are
further separated from the training set for validation. For Alter-∝SVM and Alter-CNN, 3000 samples are selected
per image due to the computational costs of processing large kernel matrices. We verified that there is no difference
in terms of cross-validation accuracy using the number of samples per image ranging from 500 to 5000.

5.3 Initialization

Initialization is important for Alter-∝SVM and Alter-CNN because they are both based on an alternating opti-
mization. In [7], random sampling is used for the initial labeling, and the best result is chosen from the one with
lowest objective function in multiple tests. This is very time-consuming, and good solutions cannot be be easily
found when the training sample size is huge. Earlier we have shown that the bag proportions are mainly close to
0% or close to 100%. Here we use a stochastic method for Alter-∝SVM and Alter-CNN. Each label ys in bag Bi
is initialized stochastically based on the label proportion zi of the bag: P (ys = +1) = zi. For Alter-CNN, the
model is trained on the stochastic labels for the first a few iterations before using EM.

5.4 CNN architectures

We use a multi-layer CNN architecture similar to the LeNet-5 [18] designed for handwritten digit classification.
The input image patches are 21 × 21, and there are a total of 882 inputs considering the dual-polarization bands.
In total, the network has six layers, including two convolutional layers, two max-pooling layers, a fully-connected
layer, and a fully-connected output layer. The first convolutional layer has 20 feature maps, and the second convo-
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lutional layer has 50 feature maps, both of which use 4 × 4 filters. The hyperbolic tangent activation function is
used for the hidden layers. The number of output neurons in this layer is set to 100. The logistic unit is used for
the output layer. The batch size for SGD is 500.

5.5 CNN training

Because the labels of the validation data are not available during the training step, the label proportion of the
validation data is used directly for validation. We use the weighted squared error calculated by

ε =

√√√√∑|B|
i=1(zi − ẑi)2|Si|∑|B|

i=1 |Si|
(4)

Due to the loss of information using only label proportions as well as the proportion bias, the reduction of the
proportion error does not always reflect a better solution. However, experimental results show that the proportion
error of the validation data can still be used as a measure of model performance in a certain level. Early stopping
is used based on the validation error. The maximum number of epoch iterations is set to 100, including the first
20 iterations training on the stochastic labels. Also, optimizing the labels after performing SGD for each epoch is
unnecessary. In our experiment, the re-labeling is performed only when the validation error is reduced in order to
prevent assigning the labels based on a poor solution.

5.6 Hand-crafted features

For Invcal-SVM and Alter-∝SVM, we use two sets of features for comparison. The grey-level co-occurrence ma-
trix (GLCM) features [19] are so far among the best texture features for SAR sea ice classification [20, 4]. The first
feature set contains both the averaged intensity and GLCM textures including entropy, contrast, and correlation,
using the same image patches for the CNN. The second feature set contains the mean, standard deviation, and
GLCM measures in different window sizes, which are selected from the same dataset using the pixelwise ground
truth and the forward selection method based on the SVM. These features have been used in [4] for fully-supervised
ice-water classification. Using the second feature set will give an unfair advantage over our approach because in
practice, the pixelwise ground truth for the dataset is not available. There are in total 8 features in the first set and
28 features in the second set.

5.7 Experimental results

We test the algorithms using the correct label proportions calculated from the pixel-wise ground truth and the
ice concentration estimated by the ice experts. We also add white Gaussian noise with standard deviations rang-
ing from 0.1 to 0.3 to the correct proportions to evaluate the robustness of the classifiers under noisy labeling
conditions. The linear kernel is used for Invcal-SVM and Alter-∝SVM.

The results are shown in Table 1. For the tests with Gaussian noise, the tests are repeated five times and the
averaged classification accuracy is reported. We see that the Invcal-SVM approach is evidently worse than the
other methods. This indicates that the bag mean is incapable of representing the properties of all the samples in the
bag. Alter-∝SVM using the hand-crafted features selected from the same dataset and the pixelwise ground truth
achieves significantly better results than Invcal-SVM and the same method using features with a fixed window
size. Alter-CNN achieves the best classification accuracy for all the cases even with a fixed window size. Also,
both Alter-∝SVM and Alter-CNN are robust to the label proportion bias because the optimization of the labels
is based on both the classifier and the given label proportion. The classification accuracy has very little decrease
when the standard deviation is within 20%. Using the estimated proportions with an average error of 85%, 87.75%
cross-validation accuracy can still be achieved by Alter-CNN.

6 Conclusions

This paper proposed a CNN-based approach to learn a model to classify ice and open water directly using label
proportions. This weak label information is provided by ice charts made by ice experts. We formulated the problem
as a probabilistic graphical model, and applied EM to alternate between updating the latent pixelwise labels and
the CNN parameters. Results on a sea ice dataset show that our method outperforms previous methods trained
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Table 1: Five-fold cross-validation accuracy (%) of Invcal-SVM and Alter-∝SVM
using different features, and Alter-CNN.

Methods Invcal-SVM Invcal-SVM Alter-∝SVM Alter-∝SVM Alter-CNN
(features used) (8) (28) (8) (28) (882)
Correct proportions 56.78 60.26 76.03 85.82 89.50
Added ± 0.1 noise 61.57 61.08 76.31 85.21 87.23
Added ±0.2 noise 59.61 60.18 76.12 85.31 87.84
Added ±0.3 noise 57.96 58.94 76.72 82.83 83.57
Estimated proportions 49.83 50.66 76.36 85.53 87.75

on well-selected hand-crafted features using both simulated proportions in different noise levels and the estimated
proportions by the ice experts. Our method also has the potential to be used for other remote sensing classification
tasks in which the pixelwise ground truth is difficult to obtain. Potential future work is the multi-class extension of
our approach that can be applied to the classification of multiple sea ice types.
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