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Abstract

Privacy preserving mechanisms such as differential privacy inject additional randomness
in the form of noise in the data, beyond the sampling mechanism. Ignoring this addi-
tional noise can lead to inaccurate and invalid inferences. In this paper, we incorporate
the privacy mechanism explicitly into the likelihood function by treating the original data
as missing, with an end goal of estimating posterior distributions over model parameters.
This leads to a principled way of performing valid statistical inference using private data,
however, the corresponding likelihoods are intractable. In this paper, we derive fast and
accurate variational approximations to tackle such intractable likelihoods that arise due to
privacy. We focus on estimating posterior distributions of parameters of the naive Bayes
log-linear model, where the sufficient statistics of this model are shared using a differen-
tially private interface. Using a simulation study, we show that the posterior approxima-
tions outperform the naive method of ignoring the noise addition mechanism.

1 Introduction and Summary

Privacy is a growing issue due to the availability of large scale data and it is widely accepted that to provide
any meaningful privacy protection, the data sharing mechanism must introduce additional randomness into
the data. Differential privacy [5] has become one of the most popular frameworks to design such mech-
anisms. However, the practical use of differential privacy for performing inference in high dimensional
contingency tables remains a challenge. For example, [6] demonstrate that differentially private releases
of summary statistics of high dimensional contingency tables are inconsistent with each other - there does
not exist an integer valued contingency table corresponding to the released statistics and hence the noisy
counts cannot be used for parameter inference. A part of this problem may be due to the fact that the privacy
mechanism is usually ignored when performing inference.

More generally, let d be a dataset that requires protection, and let P (D; θ) be a model on the data D. The
end user of the private data is interested in performing inference on the parameters θ. Privacy preserving
mechanisms can be modeled as a family of conditional probability distributions, P (Z|D = d, γ), i.e., the
released dataset z is a sample from P (Z|D = d, γ), where the parameters of privacy mechanism γ are
known. Most of the current work advocates using a naive likelihood based on P (z; θ) to make inferences
(either Bayesian or frequentist) about θ, ignoring the privacy mechanism, with a few notable exceptions

1



discussed in related work below. In some cases, z is post-processed to minimize some form of distance from
d, before being plugged into the naive likelihood, for example, see [1], [7]. However, it has been shown that
this strategy of using z directly with the naive likelihood can lead to invalid and inaccurate inferences, and
in many cases, the maximum likelihood and other parameter estimates may not even exist; see for example
[6], [12].

In this paper, we declare the original data d as missing or noisy, and develop methods that incorporate
the privacy mechanism into the likelihood. This ensures that the parameter estimates exist, and the sta-
tistical inference is valid. It also offers improved accuracy in estimation of θ (and d, if needed), and
can provides meaningful estimates of standard errors. Thus one should ideally work with the likelihood
P (Z; θ; γ) =

∑
d P (Z|D, γ)P (D; θ), which requires summing over all possible missing data. In most

cases, this likelihood is intractable and we need to resort to approximation methods. We use variational
approximations [9] for performing inference in contingency tables released by a differentially private mech-
anism. We focus on estimating approximate posterior distributions of models when the sufficient statistics
are given by two-way marginal summaries of a contingency table. The likelihood contains non-conjugate
and non-differentiable terms that are not amenable to existing mean field approximations. Moreover, the pa-
rameters are constrained to lie in a simplex. We derive a new lower bound for the likelihood and use an MM
algorithm [8] to maximize the lower bound while respecting the parameter constraints. We use simulation
studies to show that the new estimator based on approximate posterior distribution is more efficient than a
“naive” estimator that ignores the privacy mechanism.

Related Work: The problem of inferring parameters from data released through privacy mechanisms has
received little attention, with some notable exceptions. Most of the work focuses on post processing the
noisy data to impose some form of structural constraints that exist in the non-private dataset. For example,
[1] develop a post processing technique to modify noisy marginal counts of a contingency table so that they
are compatible with the existence of a real valued contingency table. However, [6] show that these “post
processed” counts fail to be useful for inferring parameters and fitting models - in particular, maximum like-
lihood estimates don’t even exist. In a similar vein, [7] develop a post processing technique to improve the
accuracy in estimation of degree distributions. But [12] demonstrate that parameter estimation is not possible
with these post processed counts due to non-existence of MLE. In order to resolve this issue, [12] develop
an alternate post processing technique with an end goal of parameter estimation that requires projection on
a marginal polytope defined by the model of interest. [13] show that this procedure leads to valid inferences
- in particular, asymptotically consistent and normal parameter estimates can be obtained. In the context of
network privacy, [14] and [11] estimate the parameters of exponential random graph models by using miss-
ing data methods and weighted MCMC to incorporate the privacy model into the likelihood. In a different
but related line of work, [16] develop an axiomatic utility framework and show that the statistical informa-
tion in a private sample is maximized when the end user is modeled as a Bayesian decision maker. They
illustrate this approach for estimating sorted histograms and show that it leads to improved accuracy. Finally,
[19] explore the use of variational approximations for modeling privacy mechanisms. Their variational ap-
proximation requires the conditional distribution of noisy answers to be of product form

∏
i P (zi|di) where

zi is the noisy answer from a data point di. This requirement does not hold for many important cases, in
particular when the data are released in the form of noisy sufficient statistics. Furthermore, they focus on
improving prediction accuracy, whereas, crucially our focus is on parameter inference (which includes the
case of accurate predictions). Finally, the lower bounds derived by [19] depend on unknown parameters,
whereas our goal is to estimate these parameters. We convert the general private inference problem, without
making any independence assumptions on the conditional distributions of the noisy answers, into a sequence
of optimization problems by using variational lower bounds that are then solved using techniques such as
the MM algorithms [8].
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2 Differential Privacy

Formally, differential privacy mechanisms can be modeled as a family of conditional probability distri-
butions, which define a distribution on the answers, conditional on the data; for a statistical overview of
differential privacy, see [18]. Let δ(D,D′) denote the Hamming distance between two datasets D and D′.
Differential Privacy is defined to limit disclosure related to presence or absence of any single individual as
the following definition illustrates:
Definition 1 (Differential Privacy). Let ε > 0 and S be the support of P . A randomized mechanism (or a
family of conditional probability distributions) P(.|D) is ε-edge differentially private if

sup
D,D′,δ(D,D′)=1

sup
S∈S

log
P(S|D)

P(S|D′)
≤ ε,

In this definition, ε is the privacy parameter that, as we will see below, controls the amount of noise added
to the query; small values of ε means more privacy protection. Typically ε is set to be smaller than 1. A
basic mechanism to release the output of any function f under differential privacy is the Laplace Mechanism
[5] which adds Laplace noise proportional to the global sensitivity of f as defined below. Let D be the set
of all possible datasets and ||.||1 be the L1 norm. The global sensitivity of a statistic f : D → Zk is
GS(f) = maxd(D,D′)=1 ||f(D)− f(D′)||1. One nice property of differential privacy is that any function
of a differentially private mechanism is also differentially private [4, 18]. We make use of this property since
the Variational approximations that we derive can be regarded as a post-processing step of a differentially
private mechanism.

3 Problem Setup

Let us assume that we observe a set D of N iid samples d1, . . . , dn of D from a parametric model P (D|θ),
where θ ∈ Θ is a vector of parameters. Due to privacy constraints, we cannot directly see the data D but
instead get a sample from a privacy preserving mechanism, modeled as a conditional probability distribution
P (Z|D). The private data z is a sample from P (Z|D)P (D|θ). Our goal is to perform inference on the
parameters θ using the observed private sample Z, i.e we wish to infer a posterior probability distributions
on the parameters θ. However, the original sample D is missing. Thus, we need to work with the intractable
likelihood,

L(Z; θ) =
∑
D

P (Z|D)P (D|θ).

We resort to Variational approximations, [9] and derive a lower bound to the log marginal likelihood given
by equation 1. To derive the Variational approximation, let q(D) and q(θ) be variational distributions defined
on the missing data d and the unknown parameters θ respectively; these can be freely chosen. As a part of
the variational approximation, we set q(d, θ) = q(d)q(θ). The log marginal likelihood can be lower bounded
as follows:

logL(Z) = log

∫
P (Z|D)P (D|θ)P (θ)dθdD ≥ Eq(D)q(θ)

[
log

P (Z|D)P (D|θ)P (θ)

q(D)q(θ)

]
. (1)

4 Private Naive Bayes Classification using Variational methods

In this section, we describe the naive Bayes model and apply variational inference to estimate the posterior
distribution of the parameters of the naive Bayes model in a private manner. One of the goals in a classifica-
tion problem is to learn a classifier based on a training dataset and predict the class of future observations.
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Let X = (X1, . . . , XK) be a random vector of K random variables, also called features. Each Xk takes
values in {1, . . . , Jk}. Let Y be a random variable taking values in {1, . . . , I}. Y is also called a class
variable. Let D = (Y,X1, . . . , XK). We observe n iid copies of the random vector D = (X,Y ). Our goal
is to estimate the conditional class probabilities, i.e., P (Y |X) in a private manner. A naive Bayes classifier
assumes that P (X|Y ) =

∏K
k=1 P (Xk|Y ).

X1

1 2

Y
1 n111 n112
2 n121 n122

X2

1 2

Y
1 n211 n212
2 n221 n222

. . .

XK

1 2

Y
1 nK11 nK12
2 nK21 nK22

Table 1: Sufficient statistics of the Naive Bayes model.
X1

1 2

Y
1 p111 p112
2 p121 p122

X2

1 2

Y
1 p211 p212
2 p221 p222

. . .

XK

1 2

Y
1 pK11 pK12
2 pK21 pK22

Table 2: An example of the parameters of the Naive Bayes model for a 2× 2×K table.

The sufficient statistics of a naive Bayes classifier are given by the set of K two-way contingency tables
formed by cross classifying each feature Xi with the class variable Y , see Table 1 for an example. Hence
a naive Bayes classifier is equivalent to a log-linear model with the two way interactions between each
feature Xk and Y and is a log-linear model of conditional independence. In what follows, we parametrize
the naive Bayes model using conditional probabilities P (Xk|Y ) and the marginal probabilities P (Y ). We
use a � to refer to a vector indexed by the indices in place of the box. For instance n� = {n1, . . . , nI}.
For an example of a parametrization with K binary features and a binary class Y , see Table 2. Thus, let
pkij = P (Xk = j|Y = i), pi = P (Y = i) and nkij = #(Y = i,Xk = j). Note that

∑Jk
j=1 p

k
ij = 1 for

all i and k. Similarly,
∑Jk
j=1 n

k
ij = ni for all i and k, where ni = #(Y = i). Assume that [nkij ]

Jk
j=1 ∼

Multinomial(ni, [p
k
ij ]
Jk
j=1). Similarly, assume that [ni] ∼ Multinomial(N, [pi]

I
i=1). Let [pkij ]

Jk
j=1 ∼

Dirichlet([αkij ]
Jk
j=1) and [pi]

I
i=1 ∼ Dirichlet([αi]Ii=1) be the priors on the parameters.

Using this notation, the sufficient statistics of the model areK two by two marginal tables of counts {nkij} for
k = 1, . . . ,K, see Table 1 for an example. Thus it is sufficient to release these marginals under differential
privacy [3]. We use the Laplace mechanism to release k marginals {nkij}, each marginal can be treated as
a histogram query. The global sensitivity, GS of each query is 2 (assuming N is fixed) and hence adding
independent Laplace noise with scale parameter = 2/ε to each count in the kth marginal query guarantees
ε-differential privacy. By composition, releasing all K marginals is Kε differentially private. Hence the
released data are mk

ij = nkij + eijk, where eijk ∼ Lap(0, b), where b = 2
ε . As described before, we treat

the original data D = {nkij} as missing and the private counts are Z = mk
ij . The parameter vector is

θ = {pkij , pi} and we are interested in computing a posterior approximation of the parameters, i.e. P (θ|Z).
This distribution involves an intractable likelihood as we need to sum over all possible tables {nkij}, which
is a very large space. Hence we resort to a Variational approximation of the posterior.

4.1 Deriving a Variational approximation

To derive a Variational approximation, let us compute the lower bound in equation 1. Recall thatZ = {mk
ij},

D = {nkij}, θ = {pkij , pi} and a � denotes a vector indexed by the indices in place of the box. Each mk
ij
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is independently distributed given nkij with a Laplace distribution of mean nkij and scale parameter b = 2
ε .

Note that P
(
nki�
)
∼ P

(
nki�|ni

)
P (ni). For each fixed i, k, P

(
nki�|ni

)
is an independent Multinomial

distribution with parameters pki�. Finally, n� is a multinomial distribution with parameters p�. Hence, the
variational lower bound of the log marginal likelihood logL(z) is

logL(Z) ≥ Eq(D)q(θ)

[
log

P (Z|D)P (D|θ)P (θ)

q(D)q(θ)

]

= E

log

∏
ijk

P
(
mk
ij |nkij

)
P
(
nkij |pki�, ni

)
P
(
pkij
)

q(nki�|ni)q(pki�)

(P (n�|p�)

q(n�)

P (p�)

q(p�)

) def
= E[log V ].

We need to restrict the variational distributions q(nki�) and q(pki�) to a tractable class of distributions so
that the expectations can be computed in a closed form. Moreover, we need to choose a distribution on
nkij that is consistent with the model P (D|θ), that is the distributions should be such that they imply the
same marginal distribution of Y for each j and k. To ensure these constraints hold, we define q(nki�)

distribution in two steps. Let q(nki�) = q(nki�|n�)q(n�) where q(nki�|ni) = Multinomial(ni, θi�k) and
q(n�) = Multinomial(N, θ�). The distributions q(pki�) and q(p�) are unrestricted.

We consider two ways to find a lower bound of the absolute value term due to the Laplace distribution. The
first bound is a based on minorizing the absolute value term, (see [8]) by using the concavity of the function√
x. We call this a quadratic bound. Let αijk be any non-negative number, then

−
|mk

ij − nkij |
b

≥ −1

2

(
(mk

ij − nkij)2

bαijk
+
αijk
b

)
,

with equality holding if and only if αijk = |mk
ij − nkij |.

The second bound named mixture bound is derived from a mixture representation of the Laplace distribution.
Note that the absolute value term is the log kernel of a Laplace random variable with scale parameter b. The
Laplace random variable can be written as a infinite mixture of Gaussian and Raleigh distributions. Specif-
ically if P (Z|β) ∼ N(0, β) and P (β) ∼ Raleigh(b), then P (Z) ∼ Laplace(0, b), see Proposition 2.2 in
[15]. This fact combined with Jensen’s inequality can be used to bound the absolute value function. It turns
out that both the mixture model bound and the quadratic bounds are equivalent up to a re-parametrization.
Specifically, if we let αijk = 1

βijk
, then these two bounds are equivalent to each other. We use the mixture

representation based lower bound as it turns out to be computationally stable. After taking expectations and
simplifying, the final lower bound is:

E[log V ] =

I∑
i=1

k∑
ij

−3

2
E [log βijk]−E [βijk]

2b2
(N(N−1)θ2i (θ

k
ij)

2+Nθiθ
k
ij+(mk

ij)
2−2Nθiθ

k
ijm

k
ij)−E

[
1

2βijk

]
+E [q(βijk)]+Nθiθ

k
ijE
[
log pkij

]
−Nθiθkij log θkij+α

k
ijE
[
log pkij

]
+
∑
i

NθiE [log pi]−Nθi log θi + αiE [log pi]

−
∑
ik

E
[
log q(pki�)

]
− E [log q(p�)] . (2)

We need to maximize the lower bound in equation 2 with respect to θkij , θi, q(pi�j), q(βijk), q(p�). Taking
the derivatives of equation 2 and setting them equal to 0 gives the following update equations:

q(βijk) = InverseGaussian(λ = 1, µ =
b√
k

) where k = E
[
(mk

ij − nkij)2
]

(3)

q(pki�) = Dirichlet({Nθiθkij + αkij + aiI(j = jk)}) (4)

q(p�) = Dirichlet(Nθi + αi + ai) (5)
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The derivation is shown in the full version [10]. Note that we need to take the functional derivative of
q(pi�j), q(p�) with the usual constraints that the distribution needs to sum to 1. The optimal solutions to
θkij and θi are obtained by solving the following optimization problems. For each fixed i and k,

argmax
θk
i�

∑
j

Aj(θ
k
ij)

2 +Bjθ
k
ij + Cjθ

k
ij log θkij (6)

subject to
∑
j θ

k
ij = 1 and θkij ≥ 0, where Aj =

−N(N−1)θ2i E[βijk]
2b2 , Bj =

−NθiE[βijk]
2b2 +

Nmk
ijθiE[βijk]

b2 +

NθiE
[
log pkij

]
, and Cj = −Nθi. To compute θ�, we need to solve

argmax
θ�

∑
i

Diθ
2
i + Eiθi + Fiθi log θi

subject to
∑
i θi = 1 and θi ≥ 0. where Di = −

∑
jk

N(N−1)θ2ijkE[βijk]

2b2 , Ei =∑
jkNθ

k
ij

(
−E[βijk]

2b2 +
mk

ijE[βijk]

b2 + E
[
log pkij

]
− log θkij

)
+NE [log pi] , and Fi = −N .

We use a first order interior point method to solve these two constrained optimization problems, see [17].
The details of this algorithm are given in ??. Note that the interior point method needs careful calibration to
ensure that the lower bound always increases, since exact closed form solution is not available. Convergence
to the optima of the lower bound is still guaranteed by the theory of MM algorithms where one alternates
between Minorizing and Maximizing, see [8]. Also note that we did not assume any functional form on
the distribution of βijk and the parameters pki� and p� and the optimization is performed over all possible
distributions. For more details on deriving variational approximations, see [2]. Some key questions for
implementation of the variational approximation remain to be answered, which are addressed next.

How do we declare convergence? Determining convergence in this algorithm is not well understood in
part because the objective function has many local optimal points. Currently, convergence is declared by
monitoring the value of the lower bound to the objective function. We keep track of E[log V t] at the tth
iteration. We declare convergence when E[log V t+1] − E[log V t] < tol for some pre-specified tolerance
value tol.

Choice of starting values and priors. The choice of starting values is an important tuning parameter in the
algorithm. Our experiments show that the number of steps needed for convergence depends on the starting
value. A good starting value speeds up convergence. In general, we found that the naive estimates of
the conditional class probabilities serve as a good starting point. The naive estimates are defined as those
obtained by ignoring the privacy mechanism and using the noisy counts mk

ij as if they were the original
counts. In cases where these counts are less than 0 or larger than the total sample size, we simply truncate
them to their corresponding upper and lower limits. Finally, we renormalized the counts to make sure that
they give a consistent estimate of p(y). To complete the specification of the algorithm, we need to choose a
prior for the parameters pi�j and p�. We select the uniform prior on pkij and pi.

5 Simulation Results

In this section, we evaluate the proposed variational approach on simulated datasets to estimate the approx-
imate posterior distributions of the parameters, i.e. pki� = {p(xk|y = i)} for each feature k and class i and
pi = p(y = i). We use the following method to simulate the data:

1. Generate pi = P (Y = i) from a Dirichlet distribution with parameters α�,
2. For each fixed i and k, Generate pki� = P (Xk = j|Y = i) from Dirichlet distribution with

parameters αi�k,
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3. Generate the marginal class counts : ni from Multinomial(N, pi),
4. Generate nki� from Multinomial(ni, pki�).

We compare the mean squared error of three estimators: two private estimators that use the noisy counts
mijk - the naive method that ignores the privacy mechanism (naive) and the variational method (V B) and
a third non-private Bayes estimator (bayes) that uses the original counts nkij and the uniform prior with
α� = 1. The squared error is calculated between the estimates of pi�j and p� and their true simulated
values. The steps used in this study are given below:

Repeat 10 times
1. Generate nki� from Multinomial(ni, pki�)

2. Repeat 5 times
(a) Add Laplace noise to nkij with mean 0 and scale 2

ε , i.e mk
ij = nkij + eijk

(b) Compute the naive estimates of posterior distribution of pkij and pi using mk
ij .

(c) Compute the variational estimate of posterior distribution using the update equations, until
the convergence criteria is met.

(d) Compute the Bayes estimate of posterior distribution using the true counts nkij .
(e) Compute the squared error between the mean parameter estimates and true estimates of pi�j

and p�

In Figure 1 below, we show a box plot of squared error of the estimators of the parameters of the posterior
distribution as a function of ε for different sample sizes N . Specifically, we vary ε from 0.0001 to 1 and
N ∈ {50, 100, 200, 500}. The plot clearly shows that the proposed private Variational Bayes estimator beats
the naive estimator in terms of the squared error. However, the error of the variational estimator is still higher
than the non-private estimator. For very small values of ε and smaller sample sizes, the efficiency (measured
by the squared error) gains offered by the variational estimator are much higher when compared to the naive
estimator. As ε increases, all the three estimators behave in a similar fashion.

6 Future Work

In this paper, we used variational approximations to estimate posterior distributions of the parameters of
a naive Bayes model in a private manner. This model is equivalent to a log-linear model with a subset of
two-way margins as sufficient statistics. A naive estimator ignores the structure of the contingency table
and the noise addition process and uses the noisy counts directly for estimation. However, as we show,
using a variational method to impose the structure of the contingency table and modeling the noise addition
process in the likelihood leads to reduction in the squared error of parameter estimation. Extension to
more general decomposable log-linear models should not pose much difficulty. The challenge would be to
choose a parametrization such that the constraints imposed by higher order marginal tables on lower order
marginals are satisfied. More work is needed to study the convergence properties of the Variational algorithm
proposed in this paper and to understand the effect of starting points on the optimality of the solution. Finally,
tighter variational bounds may be used to obtain more accurate approximations. In using the variational
approximation, we made an assumption that the distributions q(nkij) of θ and nkij are independent. Relaxing
this assumption may lead to a more accurate approximation.
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Figure 1: Comparison of estimators of the posterior distribution using squared error for varying sample size
N and ε. Here naive is the naive estimator based on the noisy counts, bayesV B is the variational estimator
based on the noisy counts, and bayes is the bayes estimator based on the non-private counts.
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