
DUAL-LOCO: Preserving Privacy Between Features in
Distributed Estimation

Christina Heinze† Brian McWilliams∗ Nicolai Meinshausen†
Seminar for Statistics, ETH Zürich† Disney Research∗
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Abstract

We present DUAL-LOCO, a communication-efficient algorithm for distributed sta-
tistical estimation. DUAL-LOCO assumes that the data is distributed according to
the features rather than the samples. It requires only a single round of communi-
cation where low-dimensional random projections are used to approximate the de-
pendencies between features available to different workers. In particular, privacy
between features can be preserved since no single worker has access to all coor-
dinates. We show that DUAL-LOCO has bounded approximation error which only
depends weakly on the number of workers. We compare DUAL-LOCO against a
state-of-the-art distributed optimization method on a real world dataset and show
that it obtains better speedups while retaining good accuracy.

1 Introduction

Many statistical estimation tasks amount to solving an optimization problem of the form

min
β∈Rp

J(β) :=

n∑
i=1

fi(β
>xi) +

λ

2
‖β‖22 (1)

where λ > 0 is the regularization parameter. The loss functions fi(β>xi) depend on labels
yi ∈ R and linearly on the coefficients, β through a vector of covariates, xi ∈ Rp. Further-
more, we assume all fi to be convex and smooth with Lipschitz continuous gradients. Concretely,
when fi(β>xi) = (yi − β>xi)

2, Eq. (1) corresponds to ridge regression; for logistic regression
fi(β

>xi) = log (1 + exp (−yiβ>xi)).

For large-scale problems, it is no longer practical to solve even relatively simple estimation tasks
such as (1) on a single machine. To deal with this, approaches to distributed data analysis have been
proposed that take advantage of many cores or computing nodes on a cluster. A common idea which
links many of these methods is stochastic optimization. Typically, each of the workers only sees a
small portion of the data points and performs incremental updates to a global parameter vector.

A fundamentally different approach to distributing learning is for each worker to only have access
to a portion of the available features. Distributing according to the features could be a preferable
alternative for several reasons. Firstly, privacy. Individual blocks of features could correspond to
sensitive information (such as medical records or social security information) from a number of
different sources which should be included in the predictive model but is not allowed to be commu-
nicated in an un-disguised form. Secondly, for high-dimensional data, where p is large relative to
n, better scaling can be achieved. This setting is challenging, however, since most loss functions are
not separable across coordinates. High-dimensional data is commonly encountered in the fields of
∗Work done while BM was a postdoc at ETH.
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bioinformatics, climate science and computer vision. Furthermore, for a variety of prediction tasks
it is often beneficial to map input vectors into a higher dimensional feature space, e.g. using deep
representation learning or considering higher-order interactions.

Our contribution. In this work we introduce DUAL-LOCO to solve problems of the form (1) in
the distributed setting when each worker only has access to a subset of the features. DUAL-LOCO
is an extension of the LOCO algorithm [1] which was recently proposed for solving distributed
ridge regression in this setting. We propose an alternative formulation where each worker instead
locally solves a dual optimization problem. DUAL-LOCO has a number of practical and theoretical
improvements over the original algorithm:

• DUAL-LOCO is applicable to a wider variety of smooth, convex `2 penalized loss minimiza-
tion problems encompassing many widely used regression and classification loss functions,
including ridge regression, logistic regression and others.

• In §4 we provide a more intuitive and tighter theoretical result which crucially does not
depend on specific details of the ridge regression model and has weaker dependence on the
number of workers, K.

• We also show that adding (rather than concatenating) random features allows for an effi-
cient implementation yet retains good approximation guarantees.

In §5 we report experimental results with a high-dimensional real world computer vision dataset. We
compare DUAL-LOCO with COCOA+, a recently proposed state-of-the-art algorithm for distributed
dual coordinate ascent [2]. Our experiments show that DUAL-LOCO demonstrates better scaling
with K than COCOA+ while retaining a good approximation of the optimal solution. We provide
an implementation of DUAL-LOCO in Apache Spark1. The portability of this framework ensures
that DUAL-LOCO is able to be run in a variety of distributed computing environments.

2 Related work

2.1 Distributed estimation

Recently, several asynchronous stochastic gradient descent (SGD) methods [3, 4] have been pro-
posed for solving problems of the form (1) in a parallel fashion in a multi-core, shared-memory
environment and have been extended to the distributed setting. For such methods, large speedups
are possible with asynchronous updates when the data is sparse. However, in some problem domains
the data collected is dense with many correlated features. Furthermore, the p� n setting can result
in slow convergence. In the distributed setting, such methods can be impractical since the cost of
communicating updates can dominate other computational considerations.

Jaggi et al. proposed a communication-efficient distributed dual coordinate ascent algorithm (CO-
COA resp. COCOA+) [5, 2]. Each worker makes multiple updates to its local dual variables before
communicating the corresponding primal update. This allows for trading off communication and
convergence speed. Notably they show that convergence is actually independent of the number of
workers, thus COCOA+ exhibits strong scaling with K.

Other recent work considers solving statistical estimation tasks using a single round of communica-
tion [6, 7]. However, all of these methods consider only distributing over the rows of the data where
an i.i.d. assumption on the observations holds.

On the other hand, few approaches have considered distributing across the columns (features) of the
data. This is a more challenging task for both estimation and optimization since the columns are
typically assumed to have arbitrary dependencies and most commonly used loss functions are not
separable over the features. Recently, LOCO was proposed to solve ridge regression when the data is
distributed across the features [1]. LOCO requires a single round to communicate small matrices of
randomly projected features which approximate the dependencies in the rest of the dataset (cf. Fig-
ure 1). Each worker then optimizes its own sub-problem independently and finally sends its portion
of the solution vector back to the master where they are combined. LOCO makes no assumptions

1Software package and implementation details available at: http://christinaheinze.github.
io/loco-lib/.
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about the correlation structure between features. It is therefore able to perform well in challenging
settings where the features are correlated between blocks and is particularly suited when p � n.
Indeed, since the relative dimensionality of local problems decreases when splitting by columns,
they are easier in a statistical sense. LOCO makes no assumptions about data sparsity so it is also
able to obtain speedups when the data is dense.

2.2 Random projections for estimation and optimization

...

Raw
features

Add random features
from all other workers 

and append to raw 
features of worker k

Compress raw features 
to random features 

Original design 
matrix

Compressed design
matrices

...Raw
features

Original design matrix, 
distributed across 

K workers 

Random
features

Figure 1: Schematic for the distributed ap-
proximation of a large data set with random
projections, used by DUAL-LOCO.

Random projections are low-dimensional embeddings
Π : Rτ → Rτsubs which approximately preserve an en-
tire subspace of vectors. They have been extensively used
to construct efficient algorithms when the sample-size is
large in a variety of domains such as: nearest neighbours
[8], matrix factorization [9], least squares [10, 11] and
recently in the context of optimization [12].

We concentrate on the Subsampled Randomized
Hadamard Transform (SRHT), a structured random
projection [13]. The SRHT consists of a projection
matrix, Π =

√
τ/τsubsDHS [9] with the definitions: (i)

S ∈ Rτ×τsubs is a subsampling matrix. (ii) D ∈ Rτ×τ is
a diagonal matrix whose entries are drawn independently
from {−1, 1}. (iii) H ∈ Rτ×τ is a normalized Walsh-
Hadamard matrix. The key benefit of the SRHT is that
due to its recursive definition the product between Π>

and u ∈ Rτ can be computed in O (τ log τ) time while
never constructing Π explicitly.

For moderately sized problems, random projections have been used to reduce the dimensionality of
the data prior to performing regression [14, 15]. However after projection, the solution vector is in
the compressed space and so interpretability of coefficients is lost. Furthermore, the projection of
the low-dimensional solution back to the original high-dimensional space is in fact guaranteed to be
a bad approximation of the optimum [16].

Dual random projections. Recently, [16, 17] studied the effect of random projections on the
dual optimization problem. For the primal problem in Eq. (1), defining K = XX>, we have the
corresponding dual

max
α∈Rn

−
n∑
i=1

f∗i (αi)−
1

2nλ
α>Kα (2)

where f∗ is the conjugate Fenchel dual of f . For example, for squared loss functions fi(u) =
1
2 (yi − u)2, we have f∗i (α) = 1

2α
2 + αyi. For problems of this form, the dual variables can be

directly mapped to the primal variables, such that for a vector α∗ which attains the maximum of (2),
the optimal primal solution has the form β∗(α∗) = − 1

nλX>α∗.

Clearly, a similar dual problem to (2) can be defined in the projected space. Defining K̃ =
(XΠ)(XΠ)> we have

max
α∈Rn

−
n∑
i=1

f∗i (αi)−
1

2nλ
α>K̃α. (3)

Importantly, the vector of dual variables does not change dimension depending on whether the orig-
inal problem (2) or the projected problem (3) is being solved. Under mild assumptions on the loss
function, by mapping the solution to this new problem, α̃, back to the original space one obtains
a vector β̃(α̃) = − 1

nλX>α̃ , which is a good approximation to β∗, the solution to the original
problem (1) [16, 17].

2.3 Privacy-aware learning

When multiple parties want to use their data about a set of individuals jointly for statistical estima-
tion without actually sharing their sensitive features due to privacy concerns, few approaches have
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been proposed. The method in [18] collectively applies the same random projection on the rows of
the local design matrices which are stored in the separate databases of the involved parties. Subse-
quently, these compressed matrices are shared publicly while the random projection matrix is kept
private. Statistical aggregates such as correlation coefficients can be estimated as column-wise inner
products are preserved. However, when applying this scheme to supervised learning, recovery of
the true coefficients is problematic [19]. When the parties hold data about the same set of features
from different individuals, the random projection is applied column-wise.

One shortcoming of this method is its susceptibility to privacy breaches if an attacker has background
knowledge [20]. For instance, in a “known sample attack” the attacker collects the private raw
features of more than τ observations where τ is the smallest number of features stored in one the
databases. Together with the published compressed features, he can then infer the entries of the
random projection matrix. This enables the computation of unbiased estimates of the raw features
for any observation (cf. §6.1 in [18]). If the occurrence of such attacks is impossible in a given
problem setting, this method may be a suitable option to preserve some degree of privacy.

A more rigorous approach is presented in [21] for the non-distributed setting. Specifically, the raw
data is held by one party but it should not be exposed to the learner. The proposed method extends
the idea of using a column-wise random projection by additionally perturbing the compressed data
matrix with Gaussian noise. This two-stage procedure satisfies differential privacy, so the com-
pressed and perturbed data matrix as well as the random projection matrix can be published. One
remaining shortcoming is the lost interpretability of the features. In order to allow for further anal-
yses, such as finding the nearest neighbors of a new input, this new observation has to be projected
into the lower-dimensional space where the distances are computed.

3 The DUAL-LOCO algorithm

Algorithm 1 DUAL-LOCO

Input: Data: X, Y , no. workers: K
Parameters: τsubs, λ

1: Partition {p} into K subsets of equal size τ and
distribute feature vectors in X accordingly over
K workers.

2: for each worker k ∈ {1, . . .K} in parallel do
3: Compute and send random features XkΠk.
4: Receive random features and construct X̄k.
5: α̃k ← LocalDualSolver(X̄k, Y, λ)

6: β̂k = − 1
nλX>k α̃k

7: Send β̂k to driver.
8: end for

Output: Solution vector: β̂ =
[
β̂1, . . . , β̂K

]

In this section we detail the DUAL-LOCO
algorithm. DUAL-LOCO differs from the
original LOCO algorithm in two important
ways. (i) The random features from each
worker are summed, rather than concate-
nated, to obtain a τsubs dimensional approx-
imation allowing for an efficient implemen-
tation in a large-scale distributed environ-
ment. (ii) Each worker solves a local dual
problem similar to (3). This allows us to
extend the theoretical guarantees to a larger
class of estimation problems beyond ridge
regression (§4).

We consider the case where p features
are distributed across K different workers
in non-overlapping subsets P1, . . . ,PK of
equal size2, τ = p/K.

Since most loss functions of interest are not separable across coordinates, a key challenge addressed
by DUAL-LOCO is to define a local minimization problem for each worker to solve independently
and asynchronously while still maintaining important dependencies between features in different
blocks and keeping communication overhead low. Algorithm 1 details DUAL-LOCO in full.

We can rewrite (1) making explicit the contribution from block k. Letting Xk ∈ Rn×τ be the
sub-matrix whose columns correspond to the coordinates in Pk (the “raw” features of block k) and
X(−k) ∈ Rn×(p−τ) be the remaining columns of X, we have

J(β) =

n∑
i=1

fi

(
x>i,kβraw + x>i,(−k)β(−k)

)
+ λ
(
‖βraw‖22 + ‖β(−k)‖22

)
. (4)

2This is for simplicity of notation only, in general the partitions can be of different sizes.
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Where xi,k and xi,(−k) are the rows of Xk and X(−k) respectively. We replace X(−k) in each
block with a low-dimensional randomized approximation which preserves its contribution to the
loss function. This procedure is described in Figure 1.

In Step 5, these matrices of random features are communicated and worker k constructs the matrix

X̄k ∈ Rn×(τ+τsubs) =

Xk,
∑
k′ 6=k

XkΠk

 , (5)

which is the concatenation of worker k’s raw features and the sum of the random features from all
other workers. Π is the SRHT matrix introduced in §2.2.

As we prove in Lemma 2, summing Rτ → Rτsubs -dimensional random projections from (K − 1)
blocks is equivalent to computing the R(p−τ) → Rτsubs -dimensional random projection in one
go. The latter operation is impractical for very large p and not applicable when the features are
distributed. Therefore, summing the random features from each worker allows the dimensionality
reduction to be distributed across workers. Additionally, the summed random feature representation
can be computed and combined very efficiently.

Furthermore, only sanitized versions of the original features are communicated. This ensures that
each worker only has exact information about its local, raw features. Thus, a user with permission
to access the data on a specific node or database k is not able to infer the raw features stored on
the other nodes without having further background knowledge. If this degree of data perturbation is
not sufficient for the problem at hand (cf. discussion in §2.3), the approach from [21] can be used
to extend DUAL-LOCO as follows. When adding Gaussian noise to the random features on each
worker before communicating, the released perturbed random features satisfy differential privacy
[21, 22]. This property guards against a much wider range of possible attacks.

For a single worker the local, approximate primal problem is then

min
β̄∈Rτ+τsubs

Jk(β̄) :=

n∑
i=1

fi(β̄
>

x̄i) +
λ

2
‖β̄‖22 (6)

where x̄i ∈ Rτ+τsubs is the ith row of X̄k. The corresponding dual problem for each worker in the
DUAL-LOCO algorithm is

max
α∈Rn

−
n∑
i=1

f∗i (αi)−
1

2nλ
α>K̃kα, K̃k = X̄kX̄

>
k . (7)

The following steps in Algorithm 1 detail respectively how the solution to (7) and the final DUAL-
LOCO estimates are obtained.

Step 6. LocalDualSolver. The LocalDualSolver computes the solution for (7), the local
dual problem. The solver can be chosen to best suit the problem at hand. This will depend on the
absolute size of n and τ + τsubs as well as on their ratio. For example, we could use SDCA [23] or
Algorithm 1 from [16].

Step 7. Obtaining the global primal solution. Each worker maps its local dual solution to the
primal solution corresponding only to the coordinates in Pk. In this way, each worker returns coef-
ficients corresponding only to its own raw features. The final primal solution vector is obtained by
concatenating the K local solutions. Unlike LOCO, we no longer require to discard the coefficients
corresponding to the random features for each worker. Consequently, computing estimates is more
efficient (especially when p� n).

4 Approximation error of DUAL-LOCO

In this section we bound the recovery error between the DUAL-LOCO solution and the solution to
Eq. (1).
Theorem 1 (DUAL-LOCO error bound). Consider a matrix X ∈ Rn×p with rank, r. Assume that
the loss f(·) is smooth and Lipschitz continuous. For a subsampling dimension τsubs ≥ c1pK where
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0 ≤ c1 ≤ 1/K2, let β∗ be the solution to (1) and β̂ be the estimate returned by Algorithm 1. We
have with probability at least 1− ξ

‖β̂ − β∗‖2 ≤ ε

1− ε
‖β∗‖2 ,where ε =

√
c0 log(2r/δ)r

c1p
< 1. (8)

Proof. By Lemma 4 and applying a union bound we can decompose the global optimization error

in terms of the error due to each worker as ‖β∗ − β̂‖2 =
√∑K

k=1 ‖β
∗
k − β̂k‖22 ≤

√
K ρ

1−ρ‖β
∗‖2,

which holds with probability 1 − ξ = 1 − K
(
δ + p−τ

er

)
. The final bound, (8) follows by setting

ρ =
√

c0 log(2r/δ)r
τsubs

and τsubs ≥ c1pK and noting that
√
K ·

ε√
K

1− ε√
K

≤ ε
1−ε .

Theorem 1 guarantees that the solution to DUAL-LOCO will be close to the optimal solution obtained
by a single worker with access to all of the data. Our result relies on the data having rank r � p.
In practice, this assumption is often fulfilled, in particular when the data is high dimensional. For a
large enough projection dimension, the bound has only a weak dependence on K through the union
bound used to determine ξ. The error is then mainly determined by the ratio between the rank and
the random projection dimension. When the rank of X increases for a fixed p, we need a larger
projection dimension to accurately capture its spectrum. On the other hand, the failure probability
increases with p and decreases with r. However, this countering effect is negligible as typically
log (p− τ)� r.

5 Implementation and experiments

In this section we demonstrates the empirical performance of DUAL-LOCO in a large, distributed
classification task. We implemented DUAL-LOCO in the Apache Spark framework1.

Cross validation. In most practical cases, the regularization parameter λ is unknown and has to
be determined via v-fold cross validation (CV). The chosen algorithm is usually run entirely once
for each fold and each of l values of λ, leading to a runtime that is approximately v · l as large as
the runtime of a single run3. In this context, DUAL-LOCO has the advantage that steps 3 and 4 in
Algorithm 1 are independent of λ. Therefore, these steps only need to be performed once per fold.
In step 5, we then estimate α̃k for each value in the provided sequence for λ. Thus, the runtime
of DUAL-LOCO will increase by much less than v · l compared to the runtime of a single run. The
performance of each value for λ is then not only averaged over the random split of the training
data set into v parts but also over the randomness introduced by the random projections which are
computed and communicated once per fold. The procedure is provided in full detail in Algorithm 2
in Appendix C.

Competing methods. For the classification example, the loss function is the hinge loss. Although
the problem is non-smooth, and therefore not covered by our theory, we still obtain good results
suggesting that Theorem 1 can be generalized to non-smooth losses. Alternatively, for classification
the smoothed hinge or logistic losses could be used. For the regression problem we use the squared
error loss and modify COCOA+ accordingly. As the LocalDualSolver we use SDCA [23]. We
ran DUAL-LOCO as well as COCOA+ on a high-performance cluster4.

Kaggle Dogs vs Cats dataset. This is a binary classification task consisting of 25, 000 images of
dogs and cats5. We resize all images to 430 × 430 pixels and use OVERFEAT [24] – a pre-trained
convolutional neural network – to extract p = 200, 704 fully dense feature vectors from the 19th

layer of the network for each image. We train on ntrain = 20, 000 images and test on the remaining
ntest = 5, 000. The size of the training data is 37GB with over 4 billion non-zero elements. All
results we report in the following are averaged over five repetitions and by “runtime” we refer to
wall clock time.

3“Approximately” since the cross validation procedure also requires time for testing. For a single run we
only count the time it takes to estimate the parameters.

4COCOA+ Spark implementation available from: https://github.com/gingsmith/cocoa.
5https://www.kaggle.com/c/dogs-vs-cats
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Figure 2: Median normalized training
and test MSE based on 5 repetitions.

Figure 2 shows the median normalized training and test
prediction MSE of DUAL-LOCO and COCOA+ for differ-
ent numbers of workers6. For DUAL-LOCO, we also vary
the size of the random feature representation and choose
τsubs = {0.005, 0.01, 0.02}×(p−τ). The corresponding er-
rors are labeled with DUAL-LOCO 0.5, DUAL-LOCO 1 and
DUAL-LOCO 2. Note that combinations of K and τsubs that
would result in τ < τsubs cannot be used, e.g. K = 192 and
τsubs = 0.01×(p−τ). We ran COCOA+ until a duality gap
of 10−2 was attained so that the number of iterations varies
for different numbers of workers7. Notably, for K = 48
more iterations were needed than in the other cases which
is reflected in the very low training error in this case. The
fraction of local points to be processed per round was set
to 10%. We determined the regularization parameter λ via
5-fold cross validation.

While the differences in training errors between DUAL-LOCO and COCOA+ are notable, the differ-
ences between the test errors are minor as long as the random feature representation is large enough.
Choosing τsubs to be only 0.5% of p − τ seems to be slightly too small for this data set. When
setting τsubs to be 1% of p − τ the largest difference between the test errors of DUAL-LOCO and
COCOA+ is 0.9%. The averaged mean squared prediction errors and their standard deviations are
collected in Table 1 in Appendix C.

Next, we compare the wall clock time needed to find the regularization parameter λ via 5-fold cross
validation. For COCOA+, using the number of iterations needed to attain a duality gap of 10−2

would lead to runtimes of more than 24 hours for K ∈ {48, 96, 192} when comparing l = 20
possible values for λ. One might argue that using a duality gap of 10−1 is sufficient for the cross
validation runs which would speed up the model selection procedure significantly as much fewer
iterations would be required. Therefore, for K ≥ 48 we use a duality gap of 10−1 during cross
validation and a duality gap of 10−2 for learning the parameters, once λ has been determined.
Figure 3a shows the runtimes when l = 20 possible values for λ are compared; The absolute runtime
of COCOA+ for a single run is smaller for K = 12 and K = 24 and larger for K ∈ {48, 96, 192},
so using more workers increased the amount of wall clock time necessary for job completion. The
total runtime, including cross validation and a single run to learn the parameters with the determined
value for λ, is always smaller for DUAL-LOCO, except when K = 12.

Figure 3 shows the relative speedup of DUAL-LOCO and COCOA+ when increasing K. The
speedup is computed by dividing the runtime for K = 12 by the runtime achieved for the corre-
sponding K = {24, 48, 96, 192}. A speedup value smaller than 1 implies an increase in runtime.
When considering a single run, we run COCOA+ in two different settings: (i) We use the number
of iterations that are needed to obtain a duality gap of 10−2 which varies for different number of
workers7. Here, the speedup is smaller than 1 for all K. (ii) We fix the number of outer iterations
to a constant number. As K increases, the number of inner iterations decreases, making it easier for
COCOA+ to achieve a speedup. We found that although COCOA+ attains a speedup of 1.17 when
increasing K from 12 to 48 (equivalent to a decrease in runtime of 14%), COCOA+ suffers a 24%
increase in runtime when increasing K from 12 to 192.

For DUAL-LOCO 0.5 and DUAL-LOCO 1 we observe significant speedups as K increases. As
we split the design matrix by features the number of observations n remains constant for different
number of workers. At the same time, the dimensionality of each worker’s local problem decreases
with K leading to shorter runtimes. In case of DUAL-LOCO 2, the communication costs dominate
the costs of computing the random projection and of the LocalDualSolver, resulting in much
smaller speedups.

Although COCOA+ was demonstrated to obtain speedups for low-dimensional data sets [2] it is
plausible that the same performance cannot be expected on a very high-dimensional data set. This il-

6In practice, this choice will depend on the available resources in addition to the size of the data set.
7For K ranging from 12 to 192, the number of iterations needed were 77, 207, 4338, 1966, resp. 3199.
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Figure 3: (a) Total wall clock time including 5-fold CV over l = 20 values for λ. For COCOA+, we use a
duality gap (DG) of 10−1 for the CV runs when K ≥ 48. Relative speedup for (b) a single run and (c) 5-fold
CV over l = 20 values for λ.

lustrates that in such a high-dimensional setting splitting the design matrix according to the columns
instead of the rows is more suitable.

6 Conclusions and further work

We have presented DUAL-LOCO which considers the challenging and rarely studied problem of
statistical estimation when data is distributed across features rather than samples. DUAL-LOCO
generalizes LOCO to a wider variety of loss functions for regression and classification. We show
that the estimated coefficients are close to the optimal coefficients that could be learned by a single
worker with access to the entire dataset. The resulting bound is more intuitive and tighter than previ-
ous bounds, notably with a very weak dependence on the number of workers. We have demonstrated
that DUAL-LOCO is able to recover accurate solutions for large-scale estimation tasks whilst also
achieving better scaling than a state-of-the-art competitor, COCOA+, as K increases. Additionally,
we have shown that DUAL-LOCO allows for fast model selection using cross-validation.

The dual formulation is convenient for `2 penalized problems but other penalties are not as straight-
forward. Similarly, the theory only holds for smooth loss functions. However, as demonstrated
empirically DUAL-LOCO also performs well with a non-smooth loss function.

As n grows very large, the random feature matrices may become too large to communicate effi-
ciently even when the projection dimension is very small. For these situations, there are a few
simple extensions we aim to explore in future work. One possibility is to first perform row-wise
random projections (c.f. [25]) to further reduce the communication requirement. Another option is
to distribute X according to rows and columns.

Contrary to stochastic optimization methods, the communication of DUAL-LOCO is limited to a
single round. For fixed n, p and τsubs, the amount of communication is deterministic and can
be fixed ahead of time. This can be beneficial in settings where there are additional constraints
on communication (for example when different blocks of features are distributed a priori across
different physical locations).

In future work, we would like to formalize the utility of DUAL-LOCO in the context of privacy-aware
learning. When the random features are perturbed by noise in order to satisfy differential privacy,
we aim to analyze the resulting loss of precision in the statistical estimation.
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Supplementary Information for DUAL-LOCO: Distributing
Statistical Estimation Using Random Projections

A Supplementary Results

Here we introduce two lemmas. The first describes the random projection construction which we use in the
distributed setting.

Lemma 2 (Summing random features). Consider the singular value decomposition X = UDV> where
U ∈ Rn×r and V ∈ Rp×r have orthonormal columns and D ∈ Rr×r is diagonal; r = rank(X). c0 is a
fixed positive constant. In addition to the raw features, let X̄k ∈ Rn×(τ+τsubs) contain random features which
result from summing the K − 1 random projections from the other workers. Furthermore, assume without loss
of generality that the problem is permuted so that the raw features of worker k’s problem are the first τ columns
of X and X̄k. Finally, let

ΘS =

[
Iτ 0
0 Π

]
∈ Rp×(τ+τsubs)

such that X̄k = XΘS .

With probability at least 1−
(
δ + p−τ

er

)
‖V>ΘSΘ>SV −V>V‖2 ≤

√
c0 log(2r/δ)r

τsubs
.

Proof. See Appendix B.

Definition 1. For ease of exposition, we shall rewrite the dual problems so that we consider minimizing convex
objective functions. More formally, the original problem is then given by

α∗ = argmin
α∈Rn

{
D(α) :=

n∑
i=1

f∗i (αi) +
1

2nλ
α>Kα

}
. (9)

The problem worker k solves is described by

α̃ = argmin
α∈Rn

{
D̃k(α) :=

n∑
i=1

f∗i (αi) +
1

2nλ
α>K̃kα

}
. (10)

Recall that K̃k = X̄kX̄
>
k , where X̄k is the concatenation of the τ raw features and τsubs random features for

worker k.

To proceed we need the following result which relates the solution of the original problem to that of the ap-
proximate problem solved by worker k.

Lemma 3 (Adapted from Lemma 1 [17]). Let α∗ and α̃ be as defined in Definition 1. We obtain

1

λ
(α̃−α∗)>

(
K− K̃k

)
α∗ ≥ 1

λ
(α̃−α∗)>K̃k(α̃−α∗). (11)

Proof. See [17].

For our main result, we rely heavily on the following variant of Theorem 1 in [17] which bounds the difference
between the coefficients estimated by worker k, β̂k and the corresponding coordinates of the optimal solution
vector β∗k.

Lemma 4 (Local optimization error. Adapted from [17]). For ρ =
√

c0 log(2r/δ)r
τsubs

the following holds

‖β̂k − β∗k‖2 ≤
ρ

1− ρ‖β
∗‖2

with probability at least 1−
(
δ + p−τ

er

)
.

The proof closely follows the proof of Theorem 1 in [17] which we restate here identifying the major differ-
ences.
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Proof. Let the quantities D̃k(α), K̃k, be as in Definition 1. For ease of notation, we shall omit the subscript k
in D̃k(α) and K̃k in the following.

By the SVD we have X = UΣV>. So K = UΣΣU> and K̃ = UΣV>ΠΠ>VΣU>. We can make the
following definitions

γ∗ = ΣU>α∗, γ̃ = ΣU>α̃.

Defining M̃ = V>ΠΠ>V and plugging these into Lemma 3 we obtain

(γ̃ − γ∗)>(I− M̃)γ∗ ≥ (γ̃ − γ∗)>M̃(γ̃ − γ∗). (12)

We now bound the spectral norm of I−M̃ using Lemma 2. Recall that Lemma 2 bounds the difference between
a matrix and its approximation by a distributed dimensionality reduction using the SRHT.

Using the Cauchy-Schwarz inequality we have for the l.h.s. of (12)

(γ̃ − γ∗)>
(
I− M̃

)
γ∗ ≤ ρ‖γ∗‖2‖γ̃ − γ∗‖2

For the r.h.s. of (12), we can write

(γ̃ − γ∗)>M̃(γ̃ − γ∗)

= ‖γ̃ − γ∗‖22 − (γ̃ − γ∗)>
(
I− M̃

)
(γ̃ − γ∗)

≥ ‖γ̃ − γ∗‖22 − ρ‖γ̃ − γ∗‖22
= (1− ρ)‖γ̃ − γ∗‖22.

Combining these two expressions and inequality (12) yields

(1− ρ)‖γ̃ − γ∗‖22 ≤ ρ‖γ∗‖2‖γ̃ − γ∗‖2
(1− ρ)‖γ̃ − γ∗‖2 ≤ ρ‖γ∗‖2. (13)

From the definition of γ∗ and γ̃ above and β∗ and β̃, respectively we have

β∗ = − 1

λ
Vγ∗, β̃ = − 1

λ
Vγ̃

so 1
λ
‖γ∗‖2 = ‖β∗‖2 and ‖β̃ − β∗‖2 = 1

λ
‖γ̃ − γ∗‖2 due to the orthonormality of V. Plugging this into (13)

and using the fact that ‖β∗ − β̃‖2 ≥ ‖β∗k − β̂k‖2 we obtain the stated result.

B Proof of Row Summing Lemma

Proof of Lemma 2 . Let Vk contain the first τ rows of V and let V(−k) be the matrix containing the remaining
rows. Decompose the matrix products as follows

V>V = V>k Vk + V>(−k)V(−k)

and

V>ΘSΘ>SV = V>k Vk + Ṽ>k Ṽk

with Ṽ>k = V>(−k)Π. Then

‖V>ΘSΘ>SV −V>V‖2
= ‖V>k Vk + Ṽ>k Ṽk −V>k Vk −V>(−k)V(−k)‖2
= ‖V>(−k)ΠΠ>V(−k) −V>(−k)V(−k)‖2.

Since ΘS is an orthogonal matrix, from Lemma 3.3 in [13] and Lemma 5, summing (K − 1) independent
SRHTs from τ to τsubs is equivalent to applying a single SRHT from p− τ to τsubs. Therefore we can simply
apply Lemma 1 of [15] to the above to obtain the result.
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Lemma 5 (Summed row sampling). Let W be an n×p matrix with orthonormal columns. Let W1, . . . ,WK

be a balanced, random partitioning of the rows of W where each matrix Wk has exactly τ = n/K rows.
Define the quantity M := n ·maxj=1,...n ‖e>j W‖22. For a positive parameter α, select the subsample size

l ·K ≥ αM log(p).

Let STk ∈ Rl×τ denote the operation of uniformly at random sampling a subset, Tk of the rows of Wk by
sampling l coordinates from {1, 2, . . . τ} without replacement. Now denote SW as the sum of the subsampled
rows

SW =

K∑
k=1

(STkWk) .

Then √
(1− δ)l ·K

n
≤ σp(SW)

and

σ1(SW) ≤
√

(1 + η)l ·K
n

with failure probability at most

p ·
[

e−δ

(1− δ)1−δ

]α log p

+ p ·
[

eη

(1 + η)1+η

]α log p

Proof. Define w>j as the jth row of W and M := n ·maxj ‖wj‖22. Suppose K = 2 and consider the matrix

G2 : = (S1W1 + S2W2)>(S1W1 + S2W2)

= (S1W1)>(S1W1) + (S2W2)>(S2W2)

+ (S1W1)>(S2W2) + (S2W2)>(S1W1).

In general, we can express G := (SW)>(SW) as

G :=

K∑
k=1

∑
j∈Tk

wjw
>
j +

∑
k′ 6=k

∑
j′∈T ′

k

wjw
>
j′

 .

By the orthonormality of W, the cross terms cancel as wjw
>
j′ = 0, yielding

G := (SW)> (SW) =

K∑
k=1

∑
j∈Tk

wjw
>
j .

We can consider G as a sum of l ·K random matrices

X
(1)
1 , . . . ,X

(K)
1 , . . . ,X

(1)
l , . . . ,X

(K)
l

sampled uniformly at random without replacement from the family X :=
{
wiw

>
i : i = 1, . . . , τ ·K

}
.

To use the matrix Chernoff bound in Lemma 6, we require the quantities µmin, µmax and B. Noticing that
λmax(wjw

>
j ) = ‖wj‖22 ≤ M

n
, we can set B ≤M/n.

Taking expectations with respect to the random partitioning (EP ) and the subsampling within each partition
(ES), using the fact that columns of W are orthonormal we obtain

E
[
X

(k)
1

]
= EPESX

(k)
1 =

1

K

1

τ

Kτ∑
i=1

wiw
>
i =

1

n
W>W =

1

n
I

Recall that we take l samples in K blocks so we can define

µmin =
l ·K
n

and µmax =
l ·K
n

.
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Plugging these values into Lemma 6, the lower and upper Chernoff bounds respectively yield

P
{
λmin (G) ≤ (1− δ) l ·K

n

}
≤ p ·

[
e−δ

(1− δ)1−δ

]l·K/M
for δ ∈ [0, 1), and

P
{
λmax (G) ≥ (1 + δ)

l ·K
n

}
≤ p ·

[
eδ

(1 + δ)1+δ

]l·K/M
for δ ≥ 0.

Noting that λmin(G) = σp(G)2, similarly for λmax and using the identity for G above obtains the desired
result.

For ease of reference, we also restate the Matrix Chernoff bound from [13, 26] but defer its proof to the original
papers.

Lemma 6 (Matrix Chernoff from [13]). Let X be a finite set of positive-semidefinite matrices with dimension
p, and suppose that

max
A∈X

λmax(A) ≤ B

Sample {A1, . . . ,Al} uniformly at random from X without replacement. Compute

µmin = l · λmin(EX1) and µmax = l · λmax(EX1)

Then

P

{
λmin

(∑
i

Ai

)
≤ (1− δ)µmin

}

≤ p ·
[

e−δ

(1− δ)1−δ

]µmin/B

for δ ∈ [0, 1), and

P

{
λmax

(∑
i

Ai

)
≥ (1 + δ)µmax

}

≤ p ·
[

eδ

(1 + δ)1+δ

]µmax/B

for δ ≥ 0.
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Algorithm K TEST MSE TRAIN MSE
DUAL-LOCO 0.5 12 0.0343 (3.75e-03) 0.0344 (2.59e-03)
DUAL-LOCO 0.5 24 0.0368 (4.22e-03) 0.0344 (3.05e-03)
DUAL-LOCO 0.5 48 0.0328 (3.97e-03) 0.0332 (2.91e-03)
DUAL-LOCO 0.5 96 0.0326 (3.13e-03) 0.0340 (2.67e-03)
DUAL-LOCO 0.5 192 0.0345 (3.82e-03) 0.0345 (2.69e-03)
DUAL-LOCO 1 12 0.0310 (2.89e-03) 0.0295 (2.28e-03)
DUAL-LOCO 1 24 0.0303 (2.87e-03) 0.0307 (1.44e-03)
DUAL-LOCO 1 48 0.0328 (1.92e-03) 0.0329 (1.55e-03)
DUAL-LOCO 1 96 0.0299 (1.07e-03) 0.0299 (7.77e-04)
DUAL-LOCO 2 12 0.0291 (2.16e-03) 0.0280 (6.80e-04)
DUAL-LOCO 2 24 0.0306 (2.38e-03) 0.0279 (1.24e-03)
DUAL-LOCO 2 48 0.0285 (6.11e-04) 0.0293 (4.77e-04)
COCOA+ 12 0.0282 (4.25e-18) 0.0246 (2.45e-18)
COCOA+ 24 0.0278 (3.47e-18) 0.0212 (3.00e-18)
COCOA+ 48 0.0246 (6.01e-18) 0.0011 (1.53e-19)
COCOA+ 96 0.0254 (5.49e-18) 0.0137 (1.50e-18)
COCOA+ 192 0.0268 (1.23e-17) 0.0158 (6.21e-18)

Table 1: Dogs vs Cats data: Normalized training and test MSE: mean and standard deviations (based on 5
repetitions).

C Supplementary Material for Section 5
Algorithm 2 DUAL-LOCO – cross validation
Input: Data: X, Y , no. workers: K, no. folds: v
Parameters: τsubs, λ1, . . . λl

1: Partition {p} into K subsets of equal size τ and distribute feature vectors in X accordingly over
K workers.

2: Partition {n} into v folds of equal size.
3: for each fold f do
4: Communicate indices of training and test points.
5: for each worker k ∈ {1, . . .K} in parallel do
6: Compute and send Xtrain

k,f Πk,f .
7: Receive random features and construct X̄train

k,f .
8: for each λj ∈ {λ1, . . . λl} do
9: α̃k,f,λj ← LocalDualSolver(X̄train

k,f , Y trainf , λj)

10: β̂k,f,λj = − 1
nλj

Xtrain
k,f

>
α̃k,f,λj

11: Ŷ testk,f,λj
= Xtest

k,f β̂k,f,λj
12: Send Ŷ testk,f,λj

to driver.
13: end for
14: end for
15: for each λj ∈ {λ1, . . . λl} do
16: Compute Ŷ testf,λj

=
∑K
k=1 Ŷ

test
k,f,λj

.

17: Compute MSEtestf,λj with Ŷ testf,λj
and Y testf .

18: end for
19: end for
20: for each λj ∈ {λ1, . . . λl} do
21: Compute MSEλj = 1

v

∑v
f=1 MSEf,λj .

22: end for
Output: Parameter λj attaining smallest MSEλj
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