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Abstract

Collective graphical models (CGMs) are a formalism for inference and learning
about a population of i.i.d. individuals when only noisy aggregate data are avail-
able. Our recent paper [19] highlights a close connection between approximate
MAP inference in CGMs and marginal inference in standard graphical models.
The connection leads us to derive a novel Belief Propagation (BP) style algorithm
for collective graphical models. Mathematically, the algorithm is a strict gener-
alization of BP — it can be viewed as an extension to minimize the Bethe free
energy plus additional energy terms that are non-linear functions of the marginals.
For CGMs, the algorithm is much more efficient than previous approaches to in-
ference. We demonstrate its state-of-the-art performance on a synthetic bird mi-
gration benchmark, we also contribute to a novel application about synthetic col-
lective human mobility, where cell phone carriers anonymize the data to protect
differential privacy, but we could recover the data to some accuracy level and thus
allow for downstream applications with the recovered data.

1 Introduction

In an influential paper, Yedidia et al. [23] showed that the loopy Belief Propagation (BP) algorithm
for marginal inference in graphical models can be understood as a fixed-point iteration that attempts
to satisfy the first-order optimality conditions of the Bethe free energy, which approximates the true
variational free energy. The result shed considerable light on the convergence properties of BP and
led to many new ideas for approximate variational inference.

Our recent paper [19] highlights a connection between the Bethe free energy and the objective func-
tion for approximate MAP inference in Collective Graphical Models (CGMs) [15], which are models
for inference and learning about individuals when only noisy aggregate data are available. We then
follow reasoning similar to that of Yedidia et al. to derive a novel message-passing algorithm for
CGMs. The algorithm, non-linear energy belief propagation (NLBP), has the interesting property
that message updates are identical to BP, with the exception that edge potentials change in each step
based on the gradient of the non-linear “evidence terms” that are present in the CGM objective but
not in the Bethe free energy. NLBP is a strict generalization of BP to deal with the presence of these
additional non-linear terms.

The new algorithm has significant practical benefits. We show experimentally that, by exploiting
the graph structure, NLBP solves the approximate MAP optimization problem for CGMs much
faster than a generic optimization solver, and scales significantly better than previous approaches
for inference in CGMs. NLBP advances applications of CGMs by significantly reducing the com-
putational burden of inference, which was previously a limiting factor. We demonstrate this point
through two synthetic applications. First, we apply CGMs to the problem of modeling bird migra-
tion [14, 15, 10], where inference is used to reconstruct bird migration routes, make forecasts of
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migration, and learn parameters of migration models. Our algorithm lets us scale from small prob-
lems to realistic-sized problems. Second, we contribute a novel application for modeling human
mobility [2, 8]. In this case, data providers (e.g., cell phone companies) release aggregate statistics
about human movements for the purpose of model fitting, but corrupt those statistics with noise
to guarantee differential privacy [4, 1, 5, 11]. CGM inference algorithms provide a way to reason
about the true sufficient statistics for the purpose of learning. We show that a CGM-based learning
algorithm that uses NLBP is much more accurate than a baseline approach that uses noisy statistics
directly for parameter estimation.

2 Collective Graphical Models

CGMs compactly describe the distribution of the aggregate statistics of a population sampled inde-
pendently from a discrete graphical model. Let G = (V,E) be an undirected graph, and consider
the following pairwise graphical model over the discrete random vectorX = (X1, . . . , X|V |):

p(x;θ) = Pr(X=x;θ)=
1

Z(θ)

∏
(i,j)∈E

φij(xi, xj ;θ). (1)

Here, φij(·, ·;θ) is a local potential defined on the setting of variables (Xi, Xj). The local potentials
are controlled by a parameter vector θ, and Z(θ) is the partition function. We assume for simplicity
that each variable Xi takes values in the same finite set X . We also assume henceforth that G is
a tree. For graphical models that are not trees or have higher-order potentials, our results can be
generalized to junction trees, with the usual blowup in space and running-time depending on the
clique-width of the junction tree.

Now, consider an ordered sample x(1), . . . ,x(M) of random vectors drawn independently from the
graphical model. We also refer to this sample as a population. Define the contingency tables ni =
(ni(xi) : xi ∈ X ) over nodes of the model and nij = (nij(xi, xj) : xi, xj ∈ X ) over edges of the
model, whose entries count the number of times particular variable settings occur in the population:

ni(xi) =
∑M
m=1 I

(
X

(m)
i = xi

)
, nij(xi, xj) =

∑M
m=1 I

(
X

(m)
i = xi, X

(m)
j = xj

)
.

Here, I(·) is an indicator function. Define the vector n to be the concatenation of all edge-based
contingency tables nij together with all node-based contingency tables ni. This is a random vector
that depends on the entire population and comprises sufficient statistics of the population, which can
be seen by writing the joint probability:

p(x(1), . . . ,x(M);θ) = g(n,θ) =
1

Z(θ)M

∏
(i,j)∈E

∏
xi,xj

φij(xi, xj ;θ)
nij(xi,xj). (2)

In CGMs, one makes noisy observations y of some subset of the sufficient statistics n and then
seeks to answer queries about the sufficient statistics given y (e.g., for the purpose of learning the
parameters θ) through the conditional distribution p(n |y;θ) ∝ p(n;θ)p(y |n). The first term in
this product, p(n;θ), is the prior distribution over the sufficient statistics or the CGM distribution.
In Section 2.2, we will describe how the CGM distribution is derived from the individual model (1).
We refer to the second term, p(y |n), as the noise model or the CGM evidence term. It is often
assumed that p(y |n) is log-concave in n, which makes the negative log-likelihood convex in n,
though most of the results of this paper do not rely on that assumption.

Example. For modeling bird migration, assume that X = (X1, . . . , XT ) is the sequence of discrete
locations (e.g. map grid cells) visited by an individual bird, and that the graphical model p(x;θ) =

1
Z(θ)

∏T−1
t=1 φt(xt, xt+1;θ) is a chain model governing the migration of an individual, where the

parameter vector θ controls how different relevant factors (distance, direction, time of year, etc.)
influence the affinity φt(xt, xt+1;θ) between two locations xt and xt+1. In the CGM, M birds of
a given species independently migrate from location to location according to the chain model. The
node-table entries nt(xt) indicate how many birds are in location xt at time t. The edge-table entries
nt,t+1(xt, xt+1) count how many birds move from location xt to location xt+1 from time t to time
t + 1. A reasonable model for eBird data [12, 18] is that the number of birds of the target species
counted by a birdwatcher is a Poisson random variable with mean proportional to the true number of
birds nt(xt), or yt(xt) |nt(xt) ∼ Pois(αnt(xt)), where α is the detection rate. Given only the noisy
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eBird counts and the prior specification of the Markov chain, the goal is to answer queries about the
distribution p(n |y;θ) to inform us about migratory transitions made by the population. Because
the vector n consists of sufficient statistics, these queries also provide all the relevant information
for learning the parameters θ from this data.

2.1 CGM Distribution

We now describe the form of the CGM distribution p(n;θ) and basic aspects of inference in this
distribution. Sundberg [20] originally described the form of this distribution for a graphical model
that is decomposable (i.e., its cliques are the nodes of some junction tree), in which case its prob-
abilities can be written in closed form in terms of the marginal probabilities of the original model.
Liu et al. [10] refined this result to be written in terms of the original potentials instead of marginal
probabilities. Applied to our tree-structured model, this gives the following CGM distribution:

p(n;θ) =M !

∏
i∈V

∏
xi∈X

(
ni(xi)!

)νi−1∏
(i,j)∈E

∏
xi,xj∈X nij(xi, xj)!

· g(n,θ) · I(n ∈ LZ
M ). (3)

The first term is a base measure (it does not depend on the parameters) that counts the number of
different ordered samples that give rise to the sufficient statistics n; in this term, νi is the degree
of node i. The second term, g(n,θ), is the joint probability of any ordered sample with sufficient
statistics n as defined in Eq. (2). The final term is a hard constraint that restricts the support of
the distribution to vectors n that are valid sufficient statistics of some ordered sample. Sheldon and
Dietterich [16] showed that, for trees or junction trees, this requirement is satisfied if and only if n
belongs to the integer-valued scaled local polytope LZ

M defined by the following constraints:

LZ
M =

{
n ∈ Z|n|

+

∣∣∣M =
∑
xi

ni(xi) ∀i ∈ V, ni(xi) =
∑
xj

nij(xi, xj) ∀i ∈ V, xi ∈ X , j ∈ N(i)
}
, (4)

where N(i) is the set of neighbors of i. The reader will recognize that LZ
M is equivalent to the

standard local polytope of a graphical model [21] except for two differences: (1) the marginals,
which in our case represent counts instead of probabilities, are scaled to sum to the population size
M instead of summing to one, and (2) these counts are constrained to be integers. The set LZ

M is
the true support of the CGM distribution. Let LM be the relaxation of LZ

M obtained by removing
the integrality constraint, i.e., the set of real-valued vectors with non-negative entries that satisfy the
same constraints.

2.2 Approximate MAP Inference

The MAP inference problem for CGMs is to find n ∈ LZ
M to maximize p(n |y;θ). Henceforth,

we will suppress the dependence on θ to simplify notation when discussing inference with respect
to fixed parameters. Unfortunately, exact MAP inference is intractable [15], but by relaxing the
feasible set from LZ

M to LM (i.e., removing the integrality requirement), taking the negative log of
the objective, and using Stirling’s approximation, Sheldon et al. [15] arrived at the following convex
relaxation of the MAP problem:

min
z∈LM

FCGM(z) := ECGM(z)−HB(z). (5)

ECGM(z) =−
∑

(i,j)∈E

∑
xi,xj

zij(xi, xj) log φij(xi, xj)− log p(y | z),

HB(z) =−
∑

(i,j)∈E

∑
xi,xj

zij(xi, xj) log zij(xi, xj) +
∑
i∈V

(νi−1)
∑
xi

zi(xi) log zi(xi).

We write z in place of n to emphasize that the contingency tables are now real-valued. The quantity
HB(z) is the Bethe entropy. It is well known that the Bethe entropy is concave over the local poly-
tope of a tree [7]. We have grouped the remaining terms into the CGM energy function ECGM(z) for
comparison with the free energies we will discuss below. If the noise model p(y |n) is log-concave
then the overall problem is convex and can be solved by off-the-shelf solvers [15]. This inference
approach is extremely accurate and much faster than the previous method of Gibbs sampling, but it
is still not efficient enough for large-scale problems.

3



3 Non-Linear Energy Belief Propagation (NLBP)

Algorithm 1: Non-Linear Belief Propagation
Input: Graph G = (V,E), (non-linear) energy function

E(z), population size M

Init : mij(xj) = 1, φ̂ij(xi, xj) = φij(xi, xj),
zij(xi, xj) ∝ φij(xi, xj), ∀(i, j) ∈ E, xi, xj .

while ¬ converged do
Execute the following updates in any order:

φ̂ij(xi, xj) = exp
{
− ∂E(z)

∂zij(xi, xj)

}
(6)

mij(xj) ∝
∑
xi

φ̂ij(xi, xj)
∏

k∈N(i)\j

mki(xi) (7)

zij(xi, xj) ∝ φ̂ij(xi, xj)
∏

k∈N(i)\j

mki(xi)
∏

l∈N(j)\i

mlj(xj)

(8)
Extract node marginals: zi(xi) ∝

∏
k∈N(i)mki(xi)

We generalize the analysis by Yedidia
et al. [23] to derive a belief propagation
(BP) algorithm for arbitrary non-linear
energies E(z) such as ECGM(z) in the
CGM MAP objective. Interested reader
should refer to [19] for derivation. Given

min
z∈LM

F (z) := E(z)−HB(z), (9)

the energy function E(z) need not to
be linear with respect to node and edge
marginals. Algorithm 1 shows Non-Linear
Belief Propagation (NLBP). Note that the
only difference from standard BP is that
we replace the edge potential φij(xi, xj)
by the exponentiated negative gradient of
E(z). For standard linear energy EB(z),
this is always equal to the original edge
potential, and we recover standard BP. For
non-linear energies, the gradient is not
constant with respect to z, so, unlike in standard BP, we must track the value of the marginals z
(normalized to sum toM ) in each iteration so we can use them to update the current edge potentials.
Note that the algorithm stores the current edge potentials φ̂ij as separate variables, which is not
necessary but will add useful flexibility in ordering updates.

Theorem 1. Suppose the NLBP message passing updates converge and the resulting vector z has
strictly positive entries. Then z is a constrained stationary point of F (z) in Problem (9) with respect
to the set LM . If G is a tree and E(z) is convex, then z is a global minimum.

Our proof in [19] does not rely on convexity of the noise term except to guarantee that a global
minimum is reached in the case of tree-structured models. Also note that NLBP maintains positive
marginals as long as the gradient of E(z) is finite (which is analogous to the assumption of positive
potentials in the linear case), so the assumption of positivity is not overly restrictive. Unlike standard
BP, which is guaranteed to converge in one pass for trees, in NLBP the edge potentials change with
each iteration so it is an open question whether convergence is guaranteed even for trees. In practice,
we find it is necessary to damp the updates to messages [6] and marginals z, and that sufficient
damping always leads to convergence in our experiments. See Algorithm 2 for details of damping.

3.1 Edge Evidence vs. Node Evidence

In our applications we consider two primary types of CGM observations, one where noisy edge
counts are observed and one where noisy node counts are observed. In both cases, we assume the
table entries are corrupted independently by a univariate noise model p(y | z):

pedge(y | z) =
∏

(i,j)∈E,xi,xj

p(yij(xi, xj) | zij(xi, xj)),

pnode(y | z) =
∏
i,xi

p(yi(xi) | zi(xi)). (10)

The first model occurs in our human mobility application: a data provider wishes to release sufficient
statistics (edge tables) but must add noise to those statistics to maintain privacy. The second model
occurs in our bird migration application: birdwatchers submit counts that provide evidence only
about the locations of birds at a particular time, and not about the migratory transitions they make.

With noisy edge counts, it is clear how to update the edge potentials within NLBP. Let `(z | y) =

− log p(y | z). Eq (6) becomes φ̂ij(xi, xj) = φij(xi, xj) exp
{
`′
(
zij(xi, xj) | yij(xi, xj)

)}
, where

`′ is the partial derivative with respect to the marginal. With noisy node counts, we must rewrite
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p(y | z) using only the edge tables. We choose to write zi(xi) = 1
νi

∑
j∈N(i)

∑
xj
zij(xi, xj) as

the average of the marginal counts obtained from all incident edge tables. This leads to symmetric
updates in Eq (6): φ̂ij(xi, xj) = φij(xi, xj) exp

{
1
νi
`′
(
yi(xi) | zi(xi)

)
+ 1

νj
`′
(
yj(xj) | zj(xj)

)}
,

where zi(xi) and zj(xj) are marginal counts of zij .

3.2 Update Schedules and Feasibility Preservation

The NLBP algorithm is a fixed-point iteration that allows updating of edge potentials, messages,
and the marginals in any order. We first considered a naive schedule, where message updates are
sequenced as in standard BP (for trees, in a pass from leaves to root and then back). When message
mij is scheduled for update, the operations are performed in the order listed in Algorithm 1: first the
edge potential is updated, then the message is updated, and then all marginals that depend onmij are
updated. Unlike BP, this algorithm does not achieve convergence in one round, so the entire process
is repeated until convergence. In our initial experiments, we discovered that the naive schedule can
take many iterations to achieve a solution that satisfies the consistency constraints among marginals
(Eq. (4)).

Algorithm 2: Feasibility Preserving NLBP
Input same as Algorithm 1, damping parameter α ≥ 0

Init : z← STANDARD-BP
(
{φij}

)
while ¬ converged do

φ̂ij(xi, xj)← exp
{
− ∂E(z)

∂zij(xi, xj)

}
, ∀(i, j) ∈ E

znew ← STANDARD-BP
(
{φ̂ij}

)
z← (1− α)z+ αznew ; // damped updates

We devised a second feasibility-preserving
schedule (Algorithm 2) that always maintains
feasibility and has the appealing property that
it can be implemented as a simple wrapper
around standard BP. This algorithm special-
izes NLBP to alternate between two phases.
In the first phase, edge potentials are frozen
while messages and marginals are updated in
a full pass through the tree. This is equiva-
lent to one call to the standard BP algorithm,
which, for trees, is guaranteed to converge in
one pass and return feasible marginals. In the second phase, only edge potentials are updated. Algo-
rithm 2 maintains the property that it’s current iterate z is always a convex combination of feasible
marginals returned by standard BP, so z is also feasible.

4 Evaluation

4.1 Speed of Inference: Synthetic Bird Migration

At first we evaluate the extent to which NLBP accelerates CGM inference and learning for a bench-
mark synthetic bird migration problem [15, 10]. We compared the speed and accuracy of NLBP
both as a standalone inference method and as a subroutine for learning versus the baselines of using
MATLAB’s interior-point algorithm to solve the approximate MAP problem [15] and inference in
the Gaussian approximation of CGMs [10].

We leave the detailed experiments setup and analysis in our paper [19]. The results show that NLBP
is not only highly scalable and much faster than all competitors, it also maintains high accuracy
across a wide range of parameter settings.

4.2 Collective Human Mobility

Next we turn to a novel application of CGMs. We address the problem of learning the parameters
of a chain-structured graphical model for human mobility, where, unlike the bird migration model,
we have access to transition counts (edge counts) instead of node counts. Transition counts are
sufficient statistics for the model, so learning with exact transition counts would be straightforward.
However, we assume the available data are corrupted by noise to maintain privacy of individuals.
The problem becomes one of learning with noisy sufficient statistics.

In particular, our application simulates the following situation: a mobile phone carrier uses phone
records to collect information about the transitions of people among a discrete set of regions, for
example, the areas closest to each mobile tower, which form a Voronoi tesselation of space [17, 3, 1].
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Data is aggregated into discrete time steps to provide hourly counts of the number of people that
move between each pair of regions. The provider wishes to release this aggregate data to inform
public policy and scientific research about human mobility. However, to maintain the privacy of their
customers, they choose to release data in a way that maintains the privacy guarantees of differential
privacy [4, 11, 1, 5]. In particular, they follow the Laplace mechanism and add independent Laplace
noise to each aggregate count [4].

Ground-Truth Model. We are interested in fitting models of daily commuting patterns from ag-
gregate data of this form. We formulate a synthetic version of this problem where people migrate
among the grid cells of a 15× 14 rectangular map. We simulate movement from home destinations
to work destinations across a period of T = 10 time steps (e.g., half-hour periods covering the pe-
riod from 6:00 a.m. to 11:00 a.m.). We parameterize the joint probability of the movement sequence
for each individual as:

p(x1:10) =
1

Z
· φ1(x1) ·

( 9∏
t=1

ψ(xt, xt+1)

)
· φ10(x10).

The potentials φ1 and φ10 represent preferences for home and work locations, respectively, while ψ
is a pairwise potential that scores transitions as more or less preferred. For the ground truth model,
we use compact parameterizations for each potential: φ1 and φ10 are discretized Gaussian potentials
(that is, φ(xt) is the value of a Gaussian density over the map measured at the center of grid cell xt)
centered around a “residential area” (top right of the map) and “commercial area” (bottom left). For
the transition potential, we set φ(xt, xt+1) proportional to exp

(
− ||vt − vt+1||2/(2σ2)

)
, where vt

and vt+1 are the centers of grid cells xt and xt+1, to prefer short transitions over long ones.

Data Generation. To generate data, we simulated M = 1 million trajectories from the ground truth
model, computed the true transition counts, and then added independent Laplace noise to each true
count n to generate the noisy count y. The Laplace noise is controlled by a scale parameter b:

p(y |n) = Laplace(b;n) =
1

2b
exp

{
−|y − n|

b

}
.

To explore the relative power of edge counts versus node counts for model fitting, we also performed
a version of the experiments where we marginalized the noisy transition counts to give only noisy
node counts yt(xt) =

∑
xt+1

yt,t+1(xt, xt+1) as evidence.

Parameters and Evaluation. We wish to compare the abilities of CGM-based algorithms and a
baseline algorithm to recover the true mobility model. When fitting models, it would be a severe
oversimplification to assume the simple parametric form used to generate data. Instead, we use a
fully parameterized model with parameters θ = (log φ1, log φ10, logψ). Here log φ1 and log φ10
are arbitrary L × 1 vectors, and logψ is an arbitrary L × L table. Note that this parameterization
is over-complete, and hence not identifiable. To evaluate fitted models, we will compare their pair-
wise marginal distributions to those of the ground truth model: unlike the potentials, the pairwise
marginals uniquely identify the joint distribution. The pairwise MAE is defined as the mean absolute
error among all L2 × (T − 1) entries of the pairwise marginals. We also considered node MAE,
which is the mean error among the L × T entries of the node marginals. Note that these do not
uniquely identify the distribution, but node MAE is an interesting metric for comparing the ability
to learn with node evidence vs. edge evidence.

Algorithms. Is it possible to estimate parameters of a graphical model given only noisy sufficient
statistics? An “obvious” approach is to ignore the noise and perform maximum-likelihood estima-
tion using the noisy sufficient statistics y in place of the true ones n. To the best of our knowledge,
this is the only previously available approach, and we use it as a baseline. The approach has been
criticized in the context of general multidimensional contingency tables [22]. To maximize the like-
lihood with respect to our parameters, we use a gradient-based optimizer with message passing as a
subroutine to compute the likelihood and its gradient [9].

For the CGM-based approach, we treat the true sufficient statistics as hidden variables and use EM
to maximize the likelihood. The overall EM approach is the same as in the bird migration model.
When the evidence is noisy edge counts, we first run the baseline algorithm and use those parameters
to initialize EM. When the evidence is noisy node counts, the baseline algorithm does not apply and
we initialize the parameters randomly.
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Figure 1: Pairwise / Node MAE vs Laplace scale parameter b after 250 EM iterations. Shaded
regions shows 95% confidence intervals computed from 10 trials for each setting.
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Figure 2: Scatter plots of approximate vs. true edge counts for a small problem (L = 4 × 7, T =
5,M = 10000, b = 50): (a) original noisy edge counts, (b) shown only in the same range as (c-d)
for better comparison, (c) reconstructed counts after 1 EM iteration, (d) reconstructed counts after
EM convergence.

Results. Figure 1(a) shows the quality of the fitted models (measured by pairwise MAE) vs. the
scale of the Laplace noise. For the CGM-based algorithms, we ran 250 EM iterations, which was
enough for convergence in almost all cases. Initializing EM with the baseline parameters helped
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achieve faster convergence (not shown). The results demonstrate that the CGM algorithm with edge
evidence improves significantly over the baseline for all values of b. As expected, the node evidence
version of the CGM algorithm performs worse, since it has access to less information. However, it
is interesting that the CGM with only node evidence outperforms the baseline (which has access to
more information) for larger values of b.

Figure 1(b) shows node MAE vs b for the same fitted models. In other words, it measures the ability
of the methods to find models that match the ground truth on single time-step marginals. We see
that both CGM algorithms are substantially better than the baseline, and the CGM algorithm with
less information (node counts only) performs slightly better. We interpret this as follows: node
evidence alone provides enough information to match the ground truth model on node marginals;
the additional information of the noisy edge counts helps narrow the model choices to one that also
matches the ground truth edge marginals. However, this does not explain why the node evidence
performs better than edge evidence for node MAE. We leave a deeper investigation of this for future
work—it may be a form of implicit regularization.

Figure 2 provides some insight into the EM algorithm and it’s ability to reconstruct edge counts. The
original, noisy counts have considerable noise and sometimes take negative values (panels (a) and
(b)). After one EM iteration (panel (c)), the reconstructed counts are now feasible, so they can no
longer be negative, and they are closer to the original counts. After EM converges, the reconstructed
counts are much more accurate (panel (d)).

Challenges and future directions. We generated the noisy observation yij(xi, xj) and yi(xi) from
zij(xi, xj) and zi(xi) accordingly as in Eq. (10). This could be an over-simplification. Some recent
works [13, 1] perform Discrete Fourier Transform (DFT) or Discrete Cosine Transform (DCT) to
the aggregated time series data, and then perturb the coefficients with noise before releasing their
data. In CGMs, this corresponds to a more general noise model, for example, each yi could link to
all zi. Another challenge is that we need to generalize our model to deal with multiple “frequent
routes” [5] simultaneously. The third challenge comes from data availability. To the best of our
knowledge there is still no Call Detail Records data that is publicly available.

5 Conclusion

Our paper [19] highlights a close connection between the problems of approximate MAP infer-
ence in collective graphical models (CGMs) and marginal inference in standard graphical models.
Inspired by this connection, we derived the non-linear belief propagation (NLBP) algorithm and
presented a feasibility-preserving version of NLBP that can be implemented as a simple wrapper
around standard BP. By applying NLBP to a synthetic benchmark problem for bird migration mod-
eling, we showed that NLBP runs significantly faster than a generic solver and is significantly more
accurate than inference in the Gaussian approximation of CGMs when the grid size or parameter
values are large. The feasibility-preserving version of NLBP is twice as fast as the naive NLBP. We
then demonstrated the utility of the NLBP algorithm by contributing a novel application of CGMs
for modeling human mobility. In this application, CGMs provide a way to fit graphical models when
the available sufficient statistics have been corrupted by noise to maintain the privacy of individuals.
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