
(ε, δ)-Differential Privacy of Gibbs Posteriors

Kentaro MINAMI
Department of Mathematical Informatics

Graduate School of Information Science and Technology
The University of Tokyo

kentaro minami@mist.i.u-tokyo.ac.jp

Hiromi ARAI
Information Technology Center

The University of Tokyo
arai@dl.itc.u-tokyo.ac.jp

Issei SATO
Department of Complexity Science and Engineering

Graduate School of Frontier Sciences
The University of Tokyo

sato@k.u-tokyo.ac.jp

Abstract

The exponential mechanism is a general method to construct a randomized esti-
mator that satisfies (ε, 0)-differential privacy. Recently, Wang et al. [12] showed
that the Gibbs posterior, which is a data-dependent probability distribution that
contains the Bayesian posterior, is essentially equivalent to the exponential mech-
anism under certain boundedness conditions on the loss function. While the expo-
nential mechanism provides a way to build an (ε, 0)-differential private algorithm,
it requires boundedness of the loss function, which is quite stringent for some
learning problems. In this paper, we focus on (ε, δ)-differential privacy of Gibbs
posteriors with convex and Lipschitz loss functions. Our result extends the clas-
sical exponential mechanism, allowing the loss functions to have an unbounded
sensitivity.

1 Introduction

Differential privacy is a notion of privacy that provides a statistical measure of privacy protection
for randomized statistics. In the field of privacy-preserving learning, constructing estimators that
satisfy (ε, δ)-differential privacy is a fundamental problem. In recent years, differentially private
algorithms for various statistical learning problems have been developed [4, 8, 1].

At an abstract level, the estimator construction procedure in statistical learning can be regarded as
the following problem. Given a dataset Dn = {x1, . . . , xn}, a statistician chooses a parameter θ
that minimizes a certain cost function L(θ,Dn). A typical example of cost function is the empirical
risk function, that is, a sum of loss function `(θ, xi) evaluated at each sample point xi ∈ Dn. For
example, the maximum likelihood estimator (MLE) is given by the minimizer of empirical risk with
loss function `(θ, x) = − log p(x | θ).

To achieve a differentially private estimator, one natural idea is to construct an algorithm based on a
posterior sampling, namely drawing a sample from a certain data-dependent probability distribution.
The exponential mechanism [10], which can be regarded as a posterior sampling, provides a general
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Table 1: Regularity conditions for (ε, δ)-differential privacy of the Gibbs posterior. Instead of the
boundedness of the loss function, our analysis in Theorem 7 requires its Lipschitz property and
convexity. Unlike the classical exponential mechanism, our result explains “shrinkage effect” or
“contraction effect”, namely, the upper bound for β depends on the concavity of the prior π and the
size of the dataset n.

(ε, δ) Loss function ` Prior π Shrinkage
Exponential
mechanism [10]

δ = 0 Bounded sensitivity Arbitrary No

Theorem 7 δ > 0 Lipschitz and convex Log-concave Yes
Theorem 10 δ > 0 Bounded, Lipschitz

and strongly convex
Log-concave Yes

method to construct a randomized estimator that satisfies (ε, 0)-differential privacy. The probability
density of the output of the exponential mechanism is proportional to exp(−βL(θ,Dn))π(θ), where
π(θ) is an arbitrary prior density function, and β > 0 is a parameter that controls the degree of
concentration. Obviously, the resulting distribution is highly concentrated around the minimizer
θ∗ ∈ argminθ L(θ,Dn). Note that most differential private algorithms involve a procedure to add
some noise (e.g. the Laplace mechanism [6], objective perturbation [4, 8], and gradient perturbation
[1]), while the posterior sampling explicitly designs the density of the output distribution.

We define the density of the Gibbs posterior distribution as

Gβ(θ | Dn) :=
exp(−β

∑n
i=1 `(θ, xi))π(θ)∫

exp(−β
∑n
i=1 `(θ, xi))π(θ)dθ

. (1)

The Gibbs posterior plays important roles in several learning problems, especially in PAC-Bayesian
learning theory [3, 13]. In the context of differential privacy, Wang et al. [12] recently pointed out
that the Bayesian (Gibbs) posterior, which is a special version of (1) with β = 1 and a specific loss
function, satisfies (ε, 0)-differential privacy because it is equivalent to the exponential mechanism
under a certain regularity condition.

In this paper, we study the (ε, δ)-differential privacy of the posterior sampling with δ > 0. In
particular, we consider the following statement.
Claim 1. Under a suitable condition on loss function ` and prior π, there exists an upper bound
B(ε, δ) > 0, and the Gibbs posterior Gβ(θ | Dn) with β ≤ B(ε, δ) satisfies (ε, δ)-differential
privacy. The value of B(ε, δ) does not depend on the boundedness of the loss function.

We point out here the analyzes of (ε, 0)-differential privacy and (ε, δ)-differential privacy with δ > 0
are very different. The largest difference arises in the regularity conditions they require. On one
hand, the exponential mechanism essentially requires the boundedness of the loss function to satisfy
(ε, 0)-differential privacy. On the other hand, the boundedness is not a necessary condition in (ε, δ)-
differential privacy. In this paper, we give a new sufficient condition for (ε, δ)-differential privacy
based on the convexity and the Lipschitz property. To our knowledge, the only other work on the
(ε, δ)-differential privacy of the posterior sampling is one by Dimitrakakis et al. [5], which requires
some modification of the definition of the neighborhood on the database. In contrast, the analysis in
this paper does not require any modification of the original definition.

Our analysis widens the application ranges of the exponential mechanism in the following aspects
(See also Table 1).

• (Removal of boundedness assumption) If the loss function is unbounded, which is usually
the case when the parameter space is unbounded, the Gibbs posterior does not satisfy (ε, 0)-
differential privacy in general. Still, in some cases we can build an (ε, δ)-differential private
estimator.
• (Tighter evaluation of β) Even when the difference of the loss function is bounded, our

analysis can yield a better scheme in determining the appropriate value of β for a given
privacy level. Figure 1 shows an example of logistic loss.
• (Shrinkage and contraction effect) Intuitively speaking, the Gibbs posterior becomes robust

against a small change of the dataset, if the prior π has a strong shrinkage effect (e.g. a
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Figure 1: An example of a logistic loss function `(θ, x) := log(1+exp(−yθ>z)). Considering two
points x± = (z,±1), the difference of the loss |`(θ, x+)− `(θ, x−)| increases proportionally to the
size of the parameter space (solid lines). In this case, the value of the β in the exponential mecha-
nism, which is inversely proportional to the maximum difference of the loss function, becomes very
small. On the other hand, the difference of the gradient |∇`(θ, x+) − ∇`(θ, x−)| does not exceed
twice of the Lipschitz constant (dashed lines). Hence, our analysis based on Lipschitz property does
not be influenced by the size of the parameter space.

Gaussian prior with a small variance), or if the size of the dataset n tends to infinity. In
our analysis, the upper bound of β depends on π and n, which explains such shrinkage and
contraction effects.

2 Preliminary

2.1 Differential privacy

Differential privacy is a notion of privacy that provides a degree of privacy protection in a statis-
tical sense. More precisely, differential privacy formalizes a closeness between output probability
distributions that correspond to two adjacent datasets.

In this paper, we assume that a dataset D = Dn = (x1, . . . , xn) is a vector that consists of n points
in abstract attribute space X , where each entry xi ∈ X represents information contributed by one
individual. Two data setsD,D′ are said to be adjacent if dH(D,D′) = 1, where dH is the Hamming
distance defined on the space of all possible datasets X d.

Let Θ be a measurable space. The set of all probability measures on Θ is denoted byM1
+(Θ). A

randomized estimator is a map ρ : Xn →M1
+(Θ) from the space of datasets to the space of prob-

ability measures. We describe the definition of differential privacy in terms of random estimators.

Definition 2 (Differential privacy). Let ε > 0 and δ ≥ 0 be given privacy parameters. We say that a
random estimator ρ : Xn →M1

+(Θ) satisfies (ε, δ)-differential privacy, if for any adjacent datasets
D,D′ ∈ Xn, an inequality

ρD(A) ≤ eερD′(A) + δ (2)

holds for every measurable set A ⊂ Θ. We say that ρ satisfies ε-differential privacy if it satisfies
(ε, 0)-differential privacy.
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2.1.1 The exponential mechanism

Here, we provide a brief review of the exponential mechanism [10]. For an arbitrary function f :
Θ×Xn → R, we define the sensitivity by

∆f := sup
D,D′∈Xn:
dH(D,D′)=1

sup
θ∈Θ
|f(θ,D)− f(θ,D′)|, (3)

which is the largest possible difference of two “adjacent” functions f(·, D) and f(·, D′) with re-
spect to supremum norm. In short, the basic theorem of the exponential mechanism (Theorem 3)
guarantees (ε, 0)-differential privacy of the Gibbs posterior.
Theorem 3 (McSherry and Talwar). Suppose that the sensitivity of the function L(θ,Dn) is finite.
Let π be an arbitrary base measure on Θ. Take a positive number β so that β ≤ ε/2∆L. Then a
probability distribution whose density with respect to π is proportional to exp(−βL(θ,Dn)) satisfies
(ε, 0)-differential privacy.

It is convenient to understand the exponential mechanism as a composition of two Lipschitz maps.
We define a distance dDP between two probability measures µ1, µ2 ∈M1

+(Θ) by

dDP(µ1, µ2) := sup
A⊂Θ

| logµ1(A)− logµ2(A)|, (4)

where the supremum is taken over measurable sets. dDP(µ1, µ2) is defined to be +∞ if µ1 and µ2

are not absolutely continuous. Recall that a map between two metric spaces f : (X, dX)→ (Y, dY )
is said to be L-Lipschitz, if dY (f(x1), f(x2)) ≤ LdX(x1, x2) holds for all x1, x2 ∈ X . It is easy to
check that the (ε, 0)-differential privacy of randomized estimator ρ is equivalent to the ε-Lipschitz
property as a map between two metric spaces ρ : Xn → M1

+(Θ). We define a function space
RΘ := {f : Θ → R} equipped with supremum distance d∞(f, g) := supθ |f(θ) − g(θ)|. If the
sensitivity ∆L is finite, a function-valued function L : Dn 7→ L(·, Dn) is ∆L-Lipschitz with respect
to dH and d∞. We define a Gibbs map Gβ : RΘ →M1

+(Θ) as follows: given a function f , Gβ(f)
is a probability distribution whose density w.r.t. π is proportional to exp(−βf). We can check that
the Gibbs map is 2β-Lipschitz. Eventually, Theorem 3 states that the exponential mechanism is
2β∆L-Lipschitz, because it is a composition of two Lipschitz functions:

(Xn, dH)
L−→ (RΘ, d∞)

Gβ−→ (M1
+(Θ), dDP). (5)

We now consider the particular case that the cost function is given as sum form L(θ,Dn) =∑n
i=1 `(θ, xi). Recently, Wang et al. [12] examined two typical cases in which ∆L is finite. The

following statement slightly generalizes their result.
Theorem 4 (Wang, et al.). (a) Suppose that the loss function ` is bounded by A, namely |`(θ, x)| ≤
A holds for all x ∈ X and θ ∈ Θ. Then ∆L ≤ 2A, and the Gibbs posterior (1) satisfies (4βA, 0)-
differential privacy.

(b) Suppose that for any fixed θ ∈ Θ, the difference |`(θ, x1) − `(θ, x2)| is bounded by L for all
x1, x2 ∈ X . Then ∆L ≤ L, and the Gibbs posterior (1) satisfies (2βL, 0)-differential privacy.

The condition ∆L < ∞ requires the boundedness of the loss function in some sense because it
is a Lipschitz condition with respect to a degenerated distance dH . In practice, statistical models
of interest do not necessarily satisfy the boundedness condition of Theorem 4. Thus, in the next
section, we will consider an alternative argument for (ε, δ)-differential privacy so that it does not
require such boundedness conditions.

3 Main Results

In this section, we state our main results in the form of Claim 1.

There is a well-known sufficient condition for the (ε, δ)-differential privacy:
Theorem 5 (See for example Lemma 2 of [7]). Let ε > 0 and δ > 0 be privacy parameters. Suppose
that a randomized estimator ρ : Xn →M1

+(Θ) satisfies a tail-bound inequality of log-density ratio

ρD

{
log

dρD
dρD′

≥ ε
}
≤ δ (6)
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for every adjacent pair of datasets D,D′. Then ρ satisfies (ε, δ)-differential privacy.

To control the tail behavior (6) of the log-density ratio function log dρD
dρD′

, we consider the concen-
tration around its expectation. Roughly speaking, inequality (6) holds if there exists an increasing
function α(t) that satisfies an inequality

∀t > 0, ρD

{
log

dρD
dρD′

≥ DKL(ρD, ρD′) + t

}
≤ exp(−α(t)), (7)

where log
dGβ,D
dGβ,D′

is the log-density ratio function, and DKL(ρD, ρD′) := EρD log dρD
dρD′

is the
Kullback-Leibler (KL) divergence. Suppose that the Gibbs posterior Gβ,D, whose densityG(θ | D)
is defined by (1), satisfies an inequality (7) for a certain α(t) = α(t, β). Then Gβ,D satisfies (6) if
there exist β, t > 0 that satisfy the following two conditions.

1. KL-divergence bound: DKL(Gβ,D, Gβ,D′) + t ≤ ε
2. Tail-probability bound: exp(−α(t, β)) ≤ δ

In Section 3.1, we consider a regularity condition that the loss function is Lipschitz and convex, in
which the sensitivity is allowed to be unbounded. In Section 3.2, we consider another condition for
bounded and strongly convex loss functions. This provides an alternative analysis to the exponential
mechanism, and some nice properties (e.g. dependency on the sample size and prior) are obtained.

3.1 Convex and Lipschitz loss

Here, we examine the case in which the loss function ` is Lipschitz and convex, and the parameter
space Θ is the entire Euclidean space Rd. Due to the unboundedness of the domain, the sensitivity
∆L can be infinite, in which case the exponential mechanism cannot be applied.

Recall that a C2-function f defined on a subset of Rd is said to be m(> 0)-strongly convex, if the
eigenvalues of the Hessian∇2f are bounded by m from below.

Assumption 6. (i) Θ = Rd.

(ii) For any x ∈ X , `(·, x) is twice differentiable, L-Lipschitz, and convex.

(iii) − log π(·) is twice differentiable and mπ-strongly convex.

In Assumption 6, the loss function `(·, x) and the difference |`(·, x1)− `(·, x2)| can be unbounded.
Thus, the classical argument of the exponential mechanism in Section 2.1.1 cannot be applied. Nev-
ertheless, our analysis shows that the Gibbs posterior satisfies (ε, δ)-differential privacy.

Theorem 7. Let β ∈ (0, 1] be a fixed parameter, and D,D′ ∈ Xn be an adjacent pair of datasets.
Under Assumption 6, inequality

Gβ,D

{
log

dGβ,D
dGβ,D′

≥ ε
}
≤ exp

(
− mπ

8L2β2

(
ε− 2L2β2

mπ

)2
)

(8)

holds for any ε > 2L2β2

mπ
.

Gibbs posterior Gβ,D satisfies (ε, δ)-differential privacy if β > 0 is taken so that the right-hand side
of (8) is bounded by δ. It is elementary to check the following statement:

Corollary 8. Let ε > 0 and 0 < δ < 1 be privacy parameters.

(i) Gibbs posterior Gβ,D satisfies (ε, e−(1+ε)/4)-differential privacy for any β ≤
√
mπε/2L2.

(ii) Taking β so that it satisfies

β ≤ ε

2L

√
mπ

1 + 2 log(1/δ)
, (9)

Gibbs posterior Gβ,D satisfies (ε, δ)-differential privacy.
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Note that the right-hand side of (8) depends on the strong concavity mπ . The strong concavity
parameter corresponds to the precision (i.e. inverse variance) of the Gaussian, and a distribution
with large mπ becomes spiky. Intuitively, if we use a prior that has a strong shrinkage effect, then
the posterior becomes robust against a small change of the dataset, and consequently the differential
privacy can be satisfied with little effort. This observation is justified in the following sense: the
upper bound of β grows proportionally to

√
mπ . In contrast, the classic exponential mechanism

does not have that kind of prior-dependency.

3.2 Strongly convex loss

Let ˜̀ be a strongly convex function defined on the entire Euclidean space Rd. If ` is a restriction
of ˜̀ to a compact L2-ball, the Gibbs posterior can satisfy (ε, 0)-differential privacy with a certain
privacy level ε > 0 because of the boundedness of `. However, using the boundedness of ∇` rather
than that of ` itself, we can give another guarantee for (ε, δ)-differential privacy.

Assumption 9. Suppose that a function ˜̀ : Rd × X → R is a twice differentiable and m`-strongly
convex with respect to its first argument. Let π̃ be a finite measure over Rd that − log π̃(·) is twice
differentiable and mπ-strongly convex. Let G̃β,D is a Gibbs posterior on Rd whose density with
respect to the Lebesgue measure is proportional to exp(−β

∑
i

˜̀(θ, xi))π̃(θ). Assume that the mean
of G̃β,D is contained in a L2-ball of radius κ:

∀D ∈ Xn, ‖EG̃β,D [θ]‖2 ≤ κ. (10)

Define a positive number α > 1.

Assume that (Θ, `, π) satisfies the following conditions.

(i) Θ is a compact L2-ball centered at the origin, and its radius RΘ satisfies RΘ ≤ κ+ α
√
d/mπ .

(ii) For any x ∈ X , `(·, x) is twice differentiable, L-Lipschitz, and convex. In other words, L :=
supx∈X supθ∈Θ‖∇θ`(θ, x)‖2 is bounded.

(iii) π is given by a restriction of π̃ to Θ.

The following statements are the counterparts of Theorem 7 and its corollary.

Theorem 10. Let β ∈ (0, 1] be a fixed parameter, and D,D′ ∈ Xn be an adjacent pair of datasets.
Under Assumption 9, inequality

Gβ,D

{
log

dGβ,D
dGβ,D′

≥ ε
}
≤ exp

(
−nm`β +mπ

4C ′β2

(
ε− C ′β2

nm`β +mπ

)2
)

(11)

holds for any ε > C′β2

nm`β+mπ
. Here, we defined C ′ := 2CL2(1 + log(α2/(α2 − 1))), where C > 0

is a universal constant that does not depend on any other quantities.

Corollary 11. Under Assumption 9, there exists an upper boundB(ε, δ) = B(ε, δ, n,m`,mπ, α) >
0, and Gβ(θ | Dn) with β ≤ B(ε, δ) satisfies (ε, δ)-differential privacy.

Similar to Corollary 8, the upper bound on β depends on the prior. Moreover, the right-hand side of
(11) decreases to 0 as the size of dataset n increases, which implies that (ε, δ)-differential privacy is
satisfied almost for free if the size of the dataset is large.

3.3 Example: Logistic regression

In this section, we will show an application of Theorem 7 to the problem of linear binary classifica-
tion. Let Z := {z ∈ Rd, ‖z‖2 ≤ R} be a space of the input variables. The space of the observation
is the set of input variables equipped with binary label X := {x = (z, y) ∈ Z × {−1,+1}}. The
problem is to determine a parameter θ = (a, b) of linear classifier fθ(z) = sgn(a>z + b).

Define a loss function `LR by

`LR(θ, x) := log(1 + exp(−y(a>z + b))). (12)
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The `2-regularized logistic regression estimator is given by

θ̂LR = argmin
θ∈Rd+1

{
1

n

n∑
i=1

`LR(θ, xi) +
λ

2
‖θ‖22

}
, (13)

where λ > 0 is a regularization parameter. Corresponding Gibbs posterior has a density

Gβ(θ | D) ∝
n∏
i=1

σ(yi(a
>zi + b))βφd+1(θ | 0, (nλ)−1I), (14)

where σ(u) = (1 + exp(−u))−1 is a sigmoid function, and φd+1(θ | µ,Σ) is a density of (d+ 1)-
dimensional Gaussian distribution.

It is easy to check that `LR(·,x) is R-Lipschitz and convex, and − log φd+1(· | 0, (nλ−1)I) is (nλ)-
strongly convex. Hence, by Corollary 8, the Gibbs posterior satisfies (ε, δ)-differential privacy if

β ≤ ε

2R

√
nλ

1 + 2 log(1/δ)
. (15)

4 Proofs

In this section, we give a formal proof of Theorem 7 and a proof sketch of 10.

There is a vast literature on techniques to obtain a concentration inequality in (7) (see, for example,
[2]). Logarithmic Sobolev inequality (LSI) is a useful tool for this purpose. We say that a probability
measure µ over Θ ⊂ Rd satisfies LSI with constant DLS if inequality

Eµ[f2 log f2]− Eµ[f2] logEµ[f2] ≤ 2DLSEµ‖∇f‖22 (16)

holds for any integrable function f , provided the expectations in the expression are defined. It is
known that [9, 2], if µ satisfies LSI, then every real-valued L-Lipschitz function F behaves in a
sub-Gaussian manner:

µ{F ≥ Eµ[F ] + t} ≤ exp

(
− t2

2L2DLS

)
. (17)

In our analysis, we utilize the LSI technique for the following two reasons: (a) a sub-Gaussian tail
bound of the log-density ratio is obtained from (17), and (b) an upper bound on the KL-divergence
is directly obtained from LSI, which appears to be difficult to prove by any other argument.

Roughly speaking, LSI holds if the logarithm of the density is strongly concave. In particular, for a
Gibbs measure on Rd, the following fact is known.

Lemma 12 ([9]). Let U : Rd → R be a twice differential, m-strongly convex and integrable
function. Let µ be a probability measure on Rd whose density is proportional to exp(−U). Then µ
satisfies LSI (16) with constant DLS = m−1.

Proof of Theorem 7. Since U(·) = β
∑
i `(·, xi)− log π(·) is mπ-strongly convex, Gibbs posterior

Gβ,D satisfies LSI with constant m−1
π .

LetD,D′ ∈ Xn be a pair of adjacent datasets. Considering appropriate permutation of the elements,
we can assume that D = (x1, . . . , xn) and D′ = (x′1, . . . , x

′
n) differ in the first element, namely,

x1 6= x′1 and xi = x′i (i = 2, . . . , n). By the assumption that `(·, x) is L-Lipschitz, we have∥∥∥∥∇ log
dGβ,D
dGβ,D′

∥∥∥∥
2

= β‖∇(`(θ, x1)− `(θ, x′1))‖2 ≤ 2βL, (18)

and log-density ratio log
dGβ,D
dGβ,D′

is 2βL-Lipschitz. Then, by concentration inequality for Lipschitz
function (17), we have

∀t > 0, Gβ,D

{
log

dGβ,D
dGβ,D′

≥ DKL(Gβ,D, Gβ,D′) + t

}
≤ exp

(
− mπt

2

8L2β2

)
(19)
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We will show an upper bound of the KL-divergence. To simplify the notation, we will write F :=
dGβ,D
dGβ,D′

. Noting that

‖∇
√
F‖22 = ‖∇ exp(2−1 logF )‖22 = ‖

√
F

2
∇ logF‖22 ≤

F

4
· (2βL)2 (20)

and

DKL(Gβ,D, Gβ,D′) = EGβ,D [logF ]

= EGβ,D′ [F logF ]− EGβ,D′ [F ]EGβ,D′ [logF ], (21)

we have, from LSI (16) with f =
√
F ,

DKL(Gβ,D, Gβ,D′) ≤ 2

mπ
EGβ,D′‖∇

√
F‖22 ≤

2L2β2

mπ
EGβ,D′ [F ] =

2L2β2

mπ
. (22)

Combining (19) and (22), we have

Gβ,D

{
log

dGβ,D
dGβ,D′

≥ ε
}
≤ Gβ,D

{
log

dGβ,D
dGβ,D′

≥ ε+DKL(Gβ,D, Gβ,D′)− 2L2β2

mπ

}
≤ exp

(
− mπ

8L2β2

(
ε− 2L2β2

mπ

)2
)

(23)

for any ε > 2L2β2

mπ
.

Proof sketch for Theorem 10. The proof is almost the same as that of Theorem 7. It is sufficient to
show that the set of Gibbs posteriors {Gβ,D, D ∈ Xn} simultaneously satisfies LSI with the same
constant. Since the logarithm of the density is m := (nm`β + mπ)-strongly convex, a probability
measure G̃β,D satisfies LSI with constant m−1. By the Poincaré inequality for G̃β,D, the variance
of ‖θ‖2 is bounded by d/m ≤ d/mπ . By the Chebyshev inequality, we can check that the mass
of parameter space is lower-bounded as G̃β,D(Θ) ≥ p := 1 − α−2. Then, by Corollary 3.9 of
[11], Gβ,D := G̃β,D|Θ satisfies LSI with constant C(1 + log p−1)m−1, where C > 0 is a universal
numeric constant.

5 Conclusion

In this paper, we have proved (ε, δ)-differential privacy of the Gibbs posterior under certain regular-
ity conditions based on Lipschitz property and convexity. The proofs of the main theorems are based
on the logarithmic Sobolev inequalities, which provides a useful tool to prove the concentration of
measure inequalities.
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