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Abstract

We introduce three differentially-private algorithms that approximate the 2nd-
moment matrix of the data. These algorithms, which in contrast to existing al-
gorithms output positive-definite matrices, correspond to existing techniques in
linear regression literature. Specifically, we discuss the following three tech-
niques. (i) For Ridge Regression, we propose setting the regularization coefficient
so that by approximating the solution using Johnson-Lindenstrauss transform we
preserve privacy. (ii) We show that adding a small batch of random samples to our
data preserves differential privacy. (iii) We show that sampling the 2nd-moment
matrix from a Bayesian posterior inverse-Wishart distribution is differentially pri-
vate provided the prior is set correctly. We also evaluate our techniques experi-
mentally and compare them to the existing “Analyze Gauss” algorithm of Dwork
et al [10].

1 Introduction

Differentially private algorithms [8, 7] are data analysis algorithms that give a strong guarantee of
privacy, roughly stated as: by adding to or removing from the data a single datapoint we do not
significantly change the probability of any outcome of the algorithm. The focus of this paper is
on differentially private approximations of the 2nd-moment matrix of the data — given a dataset
D ∈ Rn×d, its 2nd-moment matrix (also referred to as the Gram matrix of data or the scatter matrix
if the mean ofD is 0) is the matrixDTD — and the uses of such approximations in linear regression.
Indeed, since the 2nd-moment matrix of the data plays a major role in many data-analysis techniques,
we already have differentially private algorithms that approximate the 2nd-moment matrix [10] for
the purpose of approximating the PCA, techniques for approximating the rank-k PCA of the data
directly [12, 11, 4, 15], or differentially private algorithms for linear regressions [3, 16, 18, 1].

However, existing techniques for differentially private linear regression suffer from the drawback
that they approximate a single regression. That is, they assume that each datapoint is composed
of a vector of features x and a label y and find the best linear combination of the features that
predicts y. Yet, given a dataset D with d attributes we are free to pick any single attribute as a
label, and any subset of the remaining attributes as features; and naı̈vely applying these algorithms
to the exp(d) different linear regression problems simply introduces far too much random noise.1 In
contrast, the differentially private techniques that approximate the 2nd-moment matrix of the data,
such as the Analyze Gauss paper of Dwork et al [10], allow us to run as many regressions on the
data as we want. Yet, to the best of our knowledge, they have never been analyzed for the purpose
of linear regression. Furthermore, the Analyze Gauss algorithm suffers from the drawback that it

1Indeed, Ullman [20] have devised a solution to this problem, but this solution works in the more-
cumbersome online model and requires exponential running-time for the curator; whereas our techniques follow
the more efficient offline approach.

1



does not necessarily output a positive-definite matrix. This, as discussed in [24] and as we show
in our experiments, can be very detrimental — even if we do project the output back onto the set
of positive definite matrices. And though the focus of this work is on linear regression, one can
postulate additional reasons why releasing a positive definite matrix is of importance, such as using
the output as a kernel matrix or doing statistical inference on top of the linear regression.

Our Contribution. In this work, we give three differentially private techniques for approximating
the 2nd-moment matrix of the data that output a positive-definite matrix. We analyze their utility,
both theoretically and empirically, and more importantly — show how they correspond to existing
techniques in linear regression. And so we contribute to an increasing line of works [2, 22, 23]
that shows that differential privacy may rise from existing techniques, provided parameters are set
properly. We also compare our algorithms to the existing Analyze Gauss technique.
(Some notation before we introduce our techniques. We assume the data is a matrix A ∈ Rn×d
with n sample points in d dimensions. For the ease of exposition, we focus on a single regression
problem, given by A = [X;y] — i.e., the label is the d-th column and the features are the remaining
p = d− 1 columns. We use σmin(A) to denote the least singular value of A.)

1. The Johnson-Lindenstrauss Transform and Ridge Regression. Blocki et al [2] have shown that
projecting the data using a Gaussian Johnson-Lindenstrauss transform preserves privacy if σmin(A)
is sufficiently large and it has been applied for linear regression [21]. Our first result improves on
the analysis of Blocki et al and uses a smaller bound on σmin(A) (shaving off a factor of log(r)
with r denoting the number of rows in the JL transform). This result implies that when σmin(A)
is large we can project the data using the JL-transform and output the 2nd-moment matrix of the
projected data and preserve privacy. Furthermore, it is also known [17] that the JL-transform gives
a good approximation for linear regression problems. However, this is somewhat contradictory
to our intuition: for datasets where y is well approximated by a linear combination of X , the least
singular value should be small (asA’s stretch along the direction (β,−1) T is small). That is why we
artificially increase the singular values of A by appending it with a matrix w · Id×d. It turns out that
this corresponds to approximating the solution of the Ridge regression problem [19, 14], the linear
regression problem with l2-regularization — the problem of finding βR = arg minβ

∑
i ‖yi − β ·

xi‖2+w2‖β‖2. Literature suggests many approaches [13] to determining the penalty coefficientw2,
approaches that are based on the data itself and on minimizing risk. Here we give a fundamentally
different approach — set w as to preserve (ε, δ)-differential privacy. Details, utility analysis and
experiments regarding this approach appear in Section 3.

2. Additive Wishart noise. Whereas the Analyze Gauss algorithm adds Gaussian noise to ATA, here
we show that we can sample a positive definite matrixW from a suitably chosen Wishart distribution
Wd(V, k), and output ATA+W . This in turn corresponds to appendingA with k i.i.d samples from
a multivariate GaussianN (0d, V ). One is able to view this too as an extension of Ridge regression,
where instead of appending A with d fixed examples, we append A with k ≈ d+ O(1/ε2) random
examples.2 Note, as opposed to Analyze Gauss [10], where the noise has 0-mean, here the expected
value of the noise is kV . This yields a useful way of post-processing the output: ATA+W − kV .
Details, theorems and experiments with additive Wishart noise appear in Section 4.

3. Sampling from an inverse-Wishart distribution. The Bayesian approach for estimating the 2nd-
moment matrix of the data assumes that the n sample points are sampled i.i.d from someN (0d, V )
for some unknown V , where we have a prior distribution on V . Each sample point causes us to
update our belief on V which results in a posterior distribution on V . Though often one just out-
puts the MAP of the posterior belief (the mean of the posterior distribution), it is also common
to output a sample drawn randomly from the posterior distribution. We show that if one uses the
inverse-Wishart distribution as a prior (which is common, as the inverse-Wishart distribution is a
conjugate prior), then sampling from the posterior is (ε, δ)-differentially private, provided the prior
is spread enough. This gives rise to our third approach of approximating ATA — sampling from a
suitable inverse Wishart distribution. We comment that the idea that existing techniques in Bayesian
analysis, and specifically sampling from the posterior distribution, are differentially-private on their
own was originally introduced in the beautiful and elegant work of Vadhan and Zheng [22]. But
whereas their work focuses on estimating the mean of the sample, we focus on estimating the

2Though it is also tempting to think of this technique as running Bayesian regression with random prior,
this analogy does not fully carry through as we discuss later.
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variances/2nd-moment. Details, theorems and experiments on sampling from the inverse-Wishart
distribution appear in Section 5.

Finally, in Section 6 we compare our algorithms to the Analyze Gauss algorithm. We show that
in the simple case where the data is devised by p independent features concatenated with a single
linear combination of the features, the Analyze Gauss algorithm, which introduces the least noise
out of all algorithms, is clearly the best algorithm once n is sufficiently large. However, when the
data contains multiple such regressions and therefore has small singular values, the situation is far
from being clear cut, and indeed, unless n is extremely large, our algorithms achieve smaller errors
than the Analyze Gauss baseline. We comment that our experiments should be viewed solely as
a proof-of-concept. They are only preliminary, and much more experimentation is needed to fully
evaluate the benefits of the various algorithms.

Our proof technique. Before continuing to preliminaries and the formal details of our algorithms,
we give an overview of the proof technique. (The proofs themselves are deferred to the supplemen-
tary material, Section ??.) To prove that each algorithm preserves (ε, δ)-differential privacy we
state and prove 3 corresponding theorems, whose proofs follow the same high-level approach. As
mentioned above, we improve on a theorem of Blocki et al [2], who were the first to show that
the JL-transform is differentially private. Blocki et al observed that by projecting the data using a
(r×n)-matrix of i.i.d normal Gaussians, we effectively repeat the same one-dimensional projection
r independent times. So they proved that each one-dimensional projection is (ε, δ)-differentially
private, and to show the entire projection preserves privacy they used the off-the-shelf composition
of Dwork et al [9], getting a bound that depends on O(

√
r log(r)). In order to derive a bound de-

pending only on O(
√
r), we do not use the composition theorem of [9] but rather study the specific

r-fold composition of the projection. As a result, we cannot follow the approach of Blocki et al.

To show that a one-dimensional projection is (ε, δ)-differentially private, Blocki et al compared the
PDFs of two multivariate Gaussians. The PDF of a multivariate Gaussian is given by the multipli-
cation of two terms: the first depends on the determinant of the variance, and the second depends
on some exponent (see exact definition in Section 2). Blocki et al compared the ratio of each of
the terms and showed that w.h.p each term’s ratio is bounded by eε/2. Unfortunately, following the
same approach of Blocki et al yields a bound of erε/2 for each of the terms and an overall bound
that depends on O(r). Instead, we observe that the contributions of the determinant term and the
exponent term to the ratio of the PDFs are of opposite signs. So we use the Matrix Determinant
Lemma and the Sherman-Morrison Lemma (see full version) to combine both terms into a single
exponent term, and bound its size using the Johnson-Lindenstrauss transform (or rather, tight bounds
on the χ2-distribution). The main lemma we use in our analysis, not only gives tight bounds for the
Gaussian JL-transform (mimicking the approach of Dasgupta and Gupta [5]), but also gives a result
that might be of independent interest. The standard JL-lemma shows that for a (r × d)-matrix R
of i.i.d normal Gaussians and any fixed vector v it holds w.h.p that vTv ∈ (1 ± η)vT( 1

rR
TR)v

provided r = O(η−2). In Lemma ?? we also show that for any fixed v we have w.h.p. that
vTv ∈ (1± η)vT( 1

r−dR
TR)−1v provided r = d+O(η−2). 3

2 Preliminaries and Notation

Notation. Throughout this paper, we use lower-case letters to denote scalars; boldboldbold characters to
denote vectors; and UPPER-case letters to denote matrices. The l-dimensional identity matrix is
denoted Il×l. For two matrices M,N with the same number of rows we use [M ;N ] to denote the
concatenation of M and N . For a given matrix, σmax(M) and σmin(M) denote its largest and
smallest singular values resp.

The Gaussian Distribution and Related Distributions. We denote by Lap(σ) the Laplace distri-
bution whose mean is 0 and variance is 2σ2. A univariate GaussianN

(
µ, σ2

)
denotes the Gaussian

distribution whose mean is µ and variance σ2. Standard concentration bounds on Gaussians give that
Pr[x > µ + σ

√
ln(1/ν)] < ν. A multivariate Gaussian N (µ,Σ) for some positive semi-definite

3To the best of our knowledge, for a general JLT, this is known to hold only when r = O(d · η−2) and the
transform preserves the lengths of all vectors in the Rd space, see [17] Corollary 11.
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Σ denotes the multivariate Gaussian distribution where the mean of the j-th coordinate is the µj and
the co-variance between coordinates j and k is Σj,k. We repeatedly use the rules regarding linear
operations on Gaussians. That is, for any scalar c, it holds that cN

(
µ, σ2

)
= N

(
c · µ, c2σ2

)
. For

any matrix C it holds that C · N (µ,Σ) = N
(
Cµ, CΣCT

)
.

The χ2
k-distribution, where k is referred to as the degrees of freedom of the distribution, is the

distribution over the l2-norm of the sum of k independent normal Gaussians. That is, given
X1, . . . , Xk ∼ N (0, 1) it holds that ζ def

= (X1, X2, . . . , Xk) ∼ N (0k, Ik×k), and ‖ζ‖2 ∼ χ2
k.

The Wishart-distributionWd(V,m) is the multivariate extension of the χ2-distribution. It describes
the scatter matrix of a sample of m i.i.d samples from a multivariate Gaussian N (0d, V ) and so
the support of the distribution is on positive definite matrices. The inverse-Wishart distribution
W−1
d (V,m) describes the distribution over positive definite matrices whose inverse is sampled from

the Wishart distribution using the inverse of V ; i.e. X ∼W−1
d (V,m) iff X−1 ∼ Wd(V

−1,m).

Differential Privacy. In this work, we deal with input of the form of a (n × d)-matrix with each
row bounded by a l2-norm of B. Converting A into a linear regression problem, we denote A as the
concatenation of the (n× p)-matrix X with the vector y ∈ Rn (A = [X;y]) where p = d− 1. This
implies we are tying to predict y as a linear combination of the columns of X . Two matrices A and
A′ are called neighbors if they differ on a single row.
Definition 2.1 ([8, 7]). An algorithm ALG which maps (n × d)-matrices into some range R is
(ε, δ)-differential privacy if for all pairs of neighboring inputs A and A′ and all subsets S ⊂ R it
holds that Pr[ALG(A) ∈ S] ≤ eεPr[ALG(A′) ∈ S] + δ. When δ = 0 we say the algorithm is
ε-differentially private.

It was shown in [8] that for any f where ‖f(A) − f(A′)‖1 ≤ ∆ then the algorithm that adds
Laplace noise Lap(∆

ε ) to f(A) is ε-differential privacy. It was shown in [7] that for any f where

‖f(A) − f(A′)‖2 ≤ ∆ then adding Laplace noise N
(

0, 2∆2 ln(2/δ)
ε

)
to f(A) is (ε, δ)-differential

privacy. This is precisely the algorithm of Dwork et al in their “Analyze Gauss” paper [10]. They
observed that in our setting, for the function f(A) = ATA we have that ‖f(A) − f(A′)‖2F = B4.
And so they add i.i.d Gaussian noise to each coordinate of ATA (forcing the noise to be symmetric,
as ATA is symmetric). We therefore refer to this benchmark as the Analyze Gauss algorithm. In
addition, it is known that the composition of two algorithms, each of which is (ε, δ)-differentially
private, yields an algorithm which is (2ε, 2δ)-differentially private.

3 Ridge Regression — Set the Regularization Coefficient to Preserve Privacy

The standard problem of linear regression, finding β̂ = arg minβ ‖Xβ−y‖2, relies on the fact that
X is of full-rank. This clearly isn’t always the case, and XTX may be singular or close to singular.
To that end, as well as for the purpose of preventing over-fitting, regularization is introduced. One
way to regularize the linear regression problem is to introduce a l2-penalty term: finding βR =
arg minβ ‖Xβ−y‖2 +w2‖β‖2. This is known as the Ridge regression problem, introduce by [19,
14] in the 60s and 70s. Ridge regression has a closed form solution: βR = (XTX +w2Ip×p)X

Ty.
The problem of setting w has been well-studied [13] where existing techniques are data-driven,
often proposing to set w as to minimize the empirical risk of βR. Here, we propose a fundamentally
different approach to the problem of setting w: set it so that we can satisfy (ε, δ)-differential privacy
(via the Johnson-Lindenstrauss transform).

Observe, the Ridge regression problem can be written as: minimize‖Xβ−y‖2 +‖wIp×pβ−0p‖2.
So, denoteX ′ are the ((n+p)×p)-matrix which we get by concatenatingX and wIp×p, and denote
y′ as the concatenation of y with p zeros. Then βR = arg min ‖X ′β − y′‖2. Since p = d − 1
and we denote A = [X;y], we can in fact set A′ as the concatenation of A with the d-dimensional

matrix wId×d, and we have that f(β)
def
=

∥∥∥∥A′( β
−1

)∥∥∥∥2

= ‖X ′β − y′‖2 + w2. Hence βR =

arg min f(β). Hence, an approximation of A′TA′ yields an approximation of the Ridge regression
problem. One way to approximate A′TA′ is via the Johnson-Lindenstrauss transform, which is
known to be differentially private if all the singular values of the given input are sufficiently large [2].
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And that is precisely why we use A′ — all the singular values of A′TA′ are greater by w2 than
the singular values ofATA, and in particular are always ≥ w2. Therefore, applying the JLT to
A′ gives an approximation of A′TA′, and furthermore, due to the work of Sarlos [17] this JLT also
approximates the linear regression problem induced byA′ (namely, arg min f(β) as defined above).
The following theorem improves on the original theorem of Blocki et al [2].

Theorem 3.1. Fix ε > 0 and δ ∈ (0, 1
e ). Fix B > 0. Fix a positive integer r and let w be such

that w2 = 4B2
(√

2r ln( 4
δ ) + ln( 4

δ )
)
/ε. Let A be a (n × d)-matrix with d < r and where each

row of A has bounded l2-norm of B. Given that σmin(A) ≥ w, the algorithm that picks a (r × n)-
matrix R whose entries are i.i.d samples from a normal distributionN (0, 1) and publishes R ·A is
(ε, δ)-differentially private.

This gives rise to our first algorithm. Algorithm 1 gets as input the parameter r — the number of
rows in our JLT, and chooses the appropriate regularization coefficientw. Based on Theorem 3.1 and
above-mentioned discussion, it is clear that Algorithm 1 is (ε, δ)-differentially private. Furthermore,
based on the work of Sarlos, we can also argue the following.

Input: A matrix A ∈ Rn×d and a bound B > 0 on the l2-norm of any row in A.
Privacy parameters: ε, δ > 0.
Parameter r indicating the number of rows in the resulting matrix.

Set w =

√
4B2

(√
2r ln( 4

δ ) + ln( 4
δ )
)
/ε.

Set A′ as the concatenation of A with wId×d.
Sample a r × (n+ d)-matrix R whose entries are i.i.d samples from a normal Gaussian.
return M = 1

r (RA′)T(RA′) and the approximation β̃R = arg minβd=−1 β
TMβ.

Algorithm 1: Approximating Ridge Regression while Preserving Privacy

Theorem 3.2. [[17], Theorem 12] Fix any η > 0 and ν ∈ (0, 1
2 ). Apply Algorithm 1 with r =

O(d log(d) ln(1/ν)/η2). Then, w.p ≥ 1− ν it holds that ‖βR − β̃R‖ ≤ η√
w2+σmin(ATA)

f(βR).

Existing results about the expected distance E[‖βR − β̂‖2] (see [6]) can be used together with
Theorem 3.2 to give a bound on ‖β̃R − β̂‖2.

In addition to Algorithm 1, we can use part of the privacy budget to look at the least singular-value
of ATA. If it happens to be the case that σmin(ATA) is large, then we can adjust w by decreasing it
by the appropriate factor. In fact, one can completely invert the algorithm and, in case σmin(ATA) is
really large, not only set the regularization coefficient to be any arbitrary non-negative number, but
also determine r based on Thm 3.1. To measure the effect of regularization and to analyze the utility
of Algorithms 1 we compared them empirically. Details appear in the full version of this work.

4 Additive Wishart Noise — Regression with Additional Random Examples

As discussed in the previous section, Ridge regression can be viewed as regression where in addition
to the sample points given by [X;y] we see d additional datapoints given by wId×d. Our second
techniques follows this approach, only, instead of introducing these d fixed datapoints, we introduce
a few more than d datapoints which are random and independent of the data.4 Formally, we give the
details in Algorithm 2 and immediately following — the theorem proving it is (ε, δ)-differentially
private.

Theorem 4.1. Fix ε ∈ (0, 1) and δ ∈ (0, 1
e ). Fix B > 0. Let A be a (n × d)-matrix where each

row of A has bounded l2-norm of B. Let N be a matrix sampled from the d-dimensional Wishart
distribution with k-degrees of freedom using the scale matrixB2 ·Id×d (i.e.,N ∼ Wd(B

2 ·Id×d, k))
for k ≥ bd+ 14

ε2 · 2 ln(4/δ)c. Then outputting X = ATA+N is (ε, δ)-differentially private.

4Independent of the data, but dependent of the problem parameters. Our noise does depend on the l2-bound
B.
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Input: A matrix A ∈ Rn×d and a bound B > 0 on the l2-norm of any row in A.
Privacy parameters: ε, δ > 0.

Set k ← bd+ 14
ε2 · 2 ln(4/δ)c.

Sample v1,v2, . . . ,vk i.i.d examples from N
(
0d, B

2Id×d
)
.

return M = ATA+
∑k
i=1 vivi

T and the approximation β̃ = arg minβd=−1 β
TMβ.

Algorithm 2: Additive Wishart Noise Algorithm

Note: Ridge Regression also has a Bayesian interpretation, as introducing a prior on β in regression
problem. It is therefore tempting to argue that Theorem 4.1 implies that solving the regression
problem with a random prior preserves privacy. (I.e., output the MAP of β after setting its prior to
a random sample from the Wishart distribution.) However, this analogy isn’t fully accurate, since
our algorithm also adds random noise to XTy. Indeed, regardless of what prior we use for β, if
y = 0n then we always output 0p as the estimator of β, so one can differentiate between the case
that y = 0n and y 6= 0n. We leave the (very interesting) question of whether Wishart additive
random noise can be interpreted as a Bayesian prior for future work.

As for utility analysis, we have the following theorem.

Theorem 4.2. Let W ∼ Wp+1(σ2I, k), and denote N ∈ Rp×p and n ∈ Rp s.t. W =(
N n
nT ∗

)
. LetX ∈ Rn×p be a matrix s.t. XTX is invertible and let y ∈ Rn, and such that there

exists a C ≥ 2 s.t. σmin(XTX) = C ·σ2(
√
k+
√
p+
√

2 ln(4/ν))2. Denote β̂ = (XTX)−1(XTy)

and β̃ = (XTX +N)−1(XTy + n). Then∥∥∥β̃ − β̂∥∥∥ ≤ 1

C − 1
‖β̂‖+ σ2(C − 2)

(C − 1)σmin(XTX)
·min

{
2
√

2kp · ln(4p/ν), (
√
k +
√
p+

√
2 ln(4/ν))2

}
We are also interested in the utility of this approach after we remove some of the noise we add in this
technique. Note, E[N ] = kB2·Id×d, and so it stands to reason that we outputATA+N−kB2·Id×d.
Now, when σmin(ATA) is small, we run the risk that some of the eigenvalues ofATA+N are smaller

then kB2. In such a case, we can still decreaseATA+N byB2
(√

k − (
√
d+

√
2 ln(4/δ))

)2

·Id×d
and w.h.p get a positive definite matrix. This is the algorithm we set to evaluate empirically, details
appear in the full version.

5 Sampling from an Inverse-Wishart Distribution (Bayesian Posterior)

In Bayesian statistics, one estimates the 2nd-moment matrix in question by starting with a prior
and updating it based on the examples in the data. More specifically, our dataset A contains n
datapoints which we assumed to be drawn i.i.d from some N (0d, V ). We assume V was sampled
from some distribution D over positive definite matrices, which is the prior for V . We then update
our belief over V using the Bayesian formula: Pr[V |A] = Pr[A |V ]·PrD[V ]∫

W
Pr[A |W ]·PrD[W ]dW

. Finally, with
the posterior belief we give an estimation of V — either by outputting the posterior distribution itself,
or by outputting the most-likely V according to the posterior, or by sampling from this posterior
distribution (maybe multiple times). In this work we assume that our estimator of V is given by
sampling from the posterior distribution.

One of the most common priors used for positive definite matrices is the inverse-Wishart distribu-
tion. This is mainly due to the fact that the inverse-Wishart distribution is conjugate prior.5 Specif-
ically, if our prior belief is that V ∼ W−1

d (Ψ, k), then after viewing n examples our posterior is
V ∼ W−1

d

(
(
∑
i xixi

T + Ψ), n+ k
)
. Here we show that sampling such a positive definite matrix

V from our posterior inverse-Wishart distribution is (ε, δ)-differentially private, provided the prior
distribution’s scale matrix, Ψ, has a sufficiently large σmin(Ψ). This result is in line with the recent

5A family of distributions is called conjugate prior if the prior distribution and the posterior distribution
both belong to this family.
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beautiful work of Vadhan and Zheng [22], who showed that many Bayesian techniques for estimat-
ing the means are differentially private, provided the prior is set correctly. The formal description of
our algorithm and its privacy statement are given below.

Input: A matrix A ∈ Rn×d and a bound B > 0 on the l2-norm of any row in A.
Privacy parameters: ε, δ > 0.

Set ψ ← 2B2

ε

(
2
√

2(n+ d) ln(4/δ) + 2 ln(4/δ)
)

.

Sample M ∼ W−1
d ((ATA+ ψ · Id×d), n+ d).

return M and the approximation β̃ = arg minβd=−1 β
TMβ.

Algorithm 3: Sampling from an Inverse-Wishart Distribution

Theorem 5.1. Fix ε > 0 and δ ∈ (0, 1
e ). Fix B > 0. Let A be a (n × d)-matrix and fix an integer

ν ≥ d. Let w be such that w2 = 2B2
(

2
√

2ν ln(4/δ) + 2 ln(4/δ)
)
/ε. Then, given that σmin(A) ≥

w, the algorithm that samples a matrix fromW−1
d (ATA, ν) is (ε, δ)-differentially private.

We comment on the similarities between Theorem 5.1 and Theorem 3.1. Indeed, the Algorithm 1
essentially samples a matrix from W(ATA + w2I, k) for some choice of w and k (and then nor-
malizes the sample by 1

k ); and Algorithm 3 samples a matrix fromW−1(ATA+ w2I, k) for a very
similar choice of w. And so, much like we did in the Johnson-Lindenstrauss case, we can also use
part of the privacy budget to estimate σmin(ATA) and then set the parameter ψ accordingly. Details
and empirical evaluation of this algorithm appear in the full version.

6 Comparison to the “Analyze Gauss” Baseline

In this work we discuss multiple ways for outputting a differentially private approximation of ATA.
One such way was given by Dwork et al in their “Analyze Gauss” paper [10]. As mentioned already,
Dwork et al simply add toATA a symmetric matrixN whose entries are sampled i.i.d from a suitable
Gaussian. Furthermore, the magnitude of the noise introduced by the Analyze Gauss algorithm is
the smallest out of all algorithms. Yet, as we stressed before, the output of Analyze Gauss isn’t
necessarily a positive definite matrix. In this section we investigate the effect of these fact on the
problem of linear regression.

We study Analyze Gauss’ utility empirically, in comparison to the other algorithms we introduce in
this work. We compare between the following 6 techniques.
1. Analyze Gauss algorithm: output ATA + N with N a symmetric matrix whose entries are i.i.d
samples from a Gaussian. (Black line, squares.)
2. The JL-based algorithm. (Blue line, squares.)
3. The additive Wishart noise algorithm given by Algorithm 2. (Magenta line, squares.)
4. A scaling version of Analyze Gauss: if the output of Analyze Gauss is not positive definite, add
cId×d to it with c = E[‖N‖].6 (Black line, circles.)
5. The Inverse-Wishart sampling algorithm, which, as we commented in the experiments of Sec-
tion 5, is analogous to the JL-based algorithm and seems to consistently do better.7(Blue line, cir-
cles.)
6. The scaling version of the additive Wishart random noise, as detailed in the experiment of
Section 4. I.e., outputting ATA + W − k · V (if this leaves the output positive definite) or
ATA+W − (

√
k − (

√
d+

√
2 ln(4/δ)))2 · V otherwise. (Magenta line, circles.)

The high-level message from the experiments we show here as follows. In the simple case, Analyze
Gauss is the best algorithm to use (and we believe this result is of interest by itself); when Analyze

6We have experimented extensively with multiple ways to project the output of the Analyze Gauss algorithm
onto the manifold of PSD matrices; including zeroing or setting to 1 all negative eigenvalues, or setting different
values for c. This other techniques did not seem to do better than technique 4 above. In fact, their utility was
just as bad as the standard Analyze Gauss algorithm (with no post-processing), returning estimations of size 12
or 9 when the true β has ‖β‖ ≈ 3.

7Both Algorithms, in (2) and (5) were given the same min-degrees-of-freedom parameter: 2d.
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Gauss returns “unreasonable” answers — so do all other algorithms we use (details below). How-
ever, there do exist cases where the Analyze Gauss algorithm under performs in comparison to the
additive Wishart noise algorithm, the JL-based algorithm or the Inverse-Wishart sampling algorithm.
Due to lack of space, we only discuss the latter case.

We argue that it is important to use algorithms that inherently output a positive definite matrix. To
that end, we now investigate a more complex case, where the data is close to being singular, such
that additive Gaussian noise is likely to introduce much error. Moreover, this setting illustrates the
difference between PCA and linear regression. In the simpler case, running regression on a k-PCA
of the data should give a good approximation of the true β; whereas in this case, even without
privacy, a k-PCA of the data drastically distorts the β̂ estimators.

In our experiment, the data A is composed of 2p features: the first p = 20 columns are independent
of one another (sampled i.i.d from a normal Gaussian); the latter p = 20 columns are the result of
some linear combination of the first p ones. And so A = [X;y1, . . . ,yp] where for every i we have
yi = Xβi + ei where each coordinate of ei is sampled i.i.d from N

(
0, σ2

)
for σ = 0.5 (fixed for

all i). In our experiments, we vary n (from 212 to 227 in powers of 2), but fix ε = 0.1. What we also
vary is the number of y-features we use in our regression. We look at the linear regression problem
where the label is some yi0 , and the features of the problem are the first d columns plus some m
additional y-columns. (I.e.: {x1, . . .xp} ∪ {y1, . . . ,ym} where the latter are disjoint to yi0 .) And
so in our setting we vary m. A good approximation of β should therefore return some β̃ which is
0 (or roughly 0)on the latter m coordinates. This corresponds to what we believe to be a high-level
task a data-analyst might want to perform: finding out which features are relevant and which are
irrelevant for regression.

The results in this case (Figure 1) are far less conclusive. When m = 0, we are back to the case
of a single regression (with no redundant features), and here Analyze Gauss (black, squares) out-
performs all other algorithms once n is large enough (in our case, n ≥ 216). Yet, it is enough to set
m = 1 to get very different results. When m > 0 it is evident that Analyze Gauss really performs
badly — in fact, in most cases its values were far beyond the range of a reasonable approximation
for β (taking values like 26 and 45 where ‖β‖ ≈ 3.2). The scaled version of Analyze Gauss (black,
circles) does perform significantly better, yet — it is not the best out of all algorithms. In fact, it
is consistently worse than the JL-based algorithms (blue, circles and squares) and from the scaled
version of the additive Wishart noise (magenta, circles) for n < 222 = 4, 194, 304. As expected, as
m increases, all algorithms’ errors become fairly large.

Figure 1: (best seen in color) A comparison of the average l2-error for 6 estimators. Denoting the
true regressor as β, for each DP-estimator β̃ the y-axis is given by the formula ‖β̃−β‖‖β‖ .
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